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For discrete velocity Boltzmann models we have found (1+ 1)-dimensional 
shock waves and periodic solutions that are rational solutions with two 
exponential variables exp(Tix + pit) (space x, time t). These exact solutions are 
sums of two rational solutions, each with one exponential variable (similarity 
solutions). We study the planar velocity models and explicitly write the results 
for the square 4-velocity and the hexagonal 6-velocity models introduced by 
Gatignol. 
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1. I N T R O D U C T I O N  

There is interest in discrete Bol tzmann models because one hopes to extract 
useful information in both  kinetic theory and fluid mechanics. Recently (I) 
for the 2-velocity Illner (2) model  and the 6-velocity Broadwell  (3) model  we 
have obtained exact (1 + 1)-dimensional (space x, time t) solutions. Here 
we extend these results for a planar  hexagonal  6-velocity model. (4) There 
exist models with velocities on a line, in a plane, or  in three-dimensional 
space. 

The simplest models are the 2-velocity ones on a line (Carleman, 
McKean,  ~5) Illner, etc.). If we except a completely solvable model,  ~6) the 
only exact solutions known  (7) were the one-dimensional  similarity ones or 
solutions deduced from ordinary differential equations. These 2-velocity 
models do not  satisfy m o m e n t u m  conservation. Among  the other models, (8) 
the Broadwell  model  with six velocities in three-dimensional space is the 
most  popular.  It  has only three or  four different densities if the solutions 
depend upon  one spatial coordinate.  
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In a mathematical analogy with the (1 + 1)-dimensional integrable 
case, let us call "multisolitons" the rational solutions with exponential 
variables ui = d/exp(Tix + pit). For the discrete models, the "solitons" are 
the similarity shock-wave solutions and the "bisolitons" either the super- 
position of two similarity shock waves or periodic solutions. 

For  the discrete models let us consider for the densities N/(associated 
to the discrete velocity v/) the so-called "planar shock-wave" solutions. 
These are rational solutions of the type N/=noi+n~/A ,  A = l + u ,  
u = d  e x p ( T x + p t )  (no~, n~, d, 7, P are constants). They have the same 
analytical structure as the kinks of the integrable systems. They are in fact 
one-dimensional similarity solutions. Seeking really (1 + 1)-dimensional 
rational solutions for the discrete models with velocity on a line or in 
the three-dimensional space, we have found ~1~ that they are simply a 
linear superposition of two such similarity shock-wave solutions: 
N~ = no~ + Y~ nJA j ,  A j  = 1 + uj, UJ = dj exp(vjx + pit), j = 1, 2 (no~, nji, dJ, 
7j, pj are constants). This is an astonishing result, because the discrete 
models are really nonlinear. However, they are in fact weakly nonlinear 
and they contain linear differential relations. 

Here we consider the third class of discrete models, with the velocities 
in a plane, and, as in the previous cases, we find that the (1 + 1)-dimen- 
sional rational solutions are still the superposition of two similarity shock- 
wave solutions. Here we construct such solutions and discuss their physical 
properties. Trying to understand the origin of this particular class of 
rational solutions in 1 + 1 dimensions, we remark that the discrete models 
(for more than two discrete velocities) always have at least two indepen- 
dent linear differential relations (conservations laws of mass and momen- 
tum). In the Appendix we show that this gives stong restrictions for the 
possible multiexponential rational solutions. The study cannot be complete. 
However, we have not found other solutions, involving several exponen- 
tials, than the linear superposition of similarity solutions. 

Here we consider 2r (2 r=4 ,  6, 8,..) velocity models in a plane, ca) 
introduced by Gatignol, with v /+  !ii+ r : 0 ,  Iv;I = 1. In the x, y spatial coor- 
dinate plane we choose Vo (vr) to be along the positive (negative) x axis, 
the angle between Vo and v/being i~/r, with c~ = cos( iz~/r ). For each velocity 
v/we associate a density Nr  For  the solutions which depend only on x the 
momentum J =  52 N~v/ has one x component and necessarily N i =  N2r-g, 
i = 1 ..... r -  1, leaving only r + 1 different densities Ni, i = 0 ..... r, among the 
2r ones. The equations for these models are 

L i N  i = C o l / ,  L i  : ~t -t- c i~  x 

r - - 1  

# C o l i = - ( r - 1 ) N i N / + r +  ~ N/+mNi+m+r 
m ~ t  
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with lost and gain terms in the collision term Col~. The mass M and 
momentum J conservation laws are satisfied: 

r - - 1  r - - 1  

M = N o + N r + 2  ~ Ni, J = N o - N r + 2  ~ c~N~ 
1 1 

r - I  

Mt+Jx=O'  J t + ( N o + N r + 2  2 c2Ni)x =0 
1 

(1.2) 

For the study of (1.1) it is convenient to distinguish between odd and even 
r values 

LiNi=Lr_iNr_i=Col~,  i =  0,..., q -  1, for r = 2 q o r r = 2 q - 1  

q 1 

LoNo + LqNq + ~ L i N  i = O, r = 2q 
1 (1 .3 )  

q 1 

0 = L o N o +  ~ LiNi, r = 2 q - 1  
1 

In the last relation if we replace LjNj by Coli, we obtain a linear relation 
between the collision terms. The important point is that besides the two 
linear conservation laws, for r > 2 other linear differential relations also 
exist. 

Let us consider a linear superposition of similarity shock waves 
Ni=no~+ ~ j n J A j ,  Aj= 1 +djexp(7jx +&t),  which we substitute into 
(1.1). On both sides of L~Ni= Coli we find terms proportional to A f  1 and 
A j  2, which give the relations of the j th  component similarity shock wave. 
In addition, in Coli we have terms (AjAj,) 1, j r  which must vanish and 
represent the compatibility condition between the j th  and the j ' th  
components. We have 

r - - I  

-- (r -- 1 )(njinsi+r + ny~nji+ r) -'~ ~ (llji+ mrlj'i+m +r -'~ ]'lj'i+,~nji+ m + r) = 0 
1 

(1.4) 

These superpositions of similarity shock waves are solutions if we have 
verified (i) the compatibility of the constraints (1.4) and (ii) the positivity 
of the solutions. We discuss the simplest 4- and 6-velocity models: 

(i) For r = 2 ,  the 4-velocity model (1.1)-(1.3) gives N3 =N1 and 

No, + No~ = N2, - N2x = - N i t  = N~ - NoN 2 (1.5) 
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This model is studied in Section 2. Except for a factor 2 in Ntt, the 
equations are the same as those of the 6-velocity Broadwell model with 
three different densitiesJ ~) 

There exist positive, physically acceptable solutions of the three 
following types: similarity shock waves, superpositions of two similarity 
shock waves, and periodic solutions. Perhaps one of the most interesting 
properties of the discrete models is to provide explicit kinetic solutions of 
shock waves. We study the infinite-Maeh shock solutions provided by the 
similarity shock-wave solutions. For  an infinite-strength shock the 
upstream temperature is T =  0. We find explicit solutions such that the 
total mass M =  No + N2-}-2N1 ratio R across the shock is larger than 1, 
while the modulus of the sound speed is less than 1. For  a superposition of 
two similarity shock waves we have obtained solutions with an almost 
infinite strength at fixed t. Then the upstream temperature is of the order of 
e, with e arbitrarily small but finite. The total mass ratio R across the shock 
is a positive number and as illustration we report a numerical example with 
R--. 3. The physical properties of the exact solutions of this model are 
similar to those (1~ of the 6-velocity Broadwell model. 

(ii) For  r = 3, the 6-velocity model, which has four different densities, 
is studied in Sections 3-5. We have N s = N 1  and N 4 = N  2 and (1.3) 
becomes for/~ = 2 

Not + No~ = N3t - N3x = --2Nit -- N~x = -2Nzt  + N2~ = N1 N2 - NoN3 

(1.6) 

with the two conservation laws 

M = No + N3 + 2(N1 + N2), J =  No - N3 + N1 - N2 

m , +  Jx = 0, J , +  [ N o + N 3 + ( N ~ + N 2 ) / 2 ] x = O  
(1.7) 

We have obtained similarity shock waves, superpositions of two similarity 
shock waves, and periodic solutions that are positive, physically acceptable 
solutions. 

For  both models (1.5) and (1.6) the exact solutions are of the 
following type: 

U~I)=noi+ni/A, U~II )=noi+njAj ,  x}nI) = noi + 2 Re(nJA) (1.8) 

For N} I), the similarity shock waves, A = l + d  exp(;)x+pt)  and 
noi, ni, d >  O, 7, and p are real; for NI Ix), the superposition of two similarity 
shock waves, Aj = 1 + dj exp(yjx + pit) and no~, nj~, dj > 0, 7j, and pj are 
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real. For  the periodic solutions NI IlI), we still have A = 1 + d exp(Tx + pt) ,  

�9 but n;, ~ -~ ivy, p = PR + ip~, and d are complex, while no; are real. 
The method for the determination of the exact solutions is the same as 

the previous one. ca) When the N; are introduced into the discrete models 
equations, we obtain relations between the parameters. We must have more 
parameters than independent relations and the difference gives the number 
of free parameters. We define y = n o / n r  [ n r = n  2 for (1.5) and n r = n 3  for 
(1.6)] and choose y as the first free parameter, while some n0i are the 
others. Then we introduce intermediate parameters, which are the ratios of 
ni, i ~  0, r; 7, P (or nj;, i r  0, r; 7j, Pj) by nr (or njr). These intermediate 
parameters are functions of y alone. The crucial point is the determination 
of nr as a function of the free parameters. Once nr is obtained, we go back 
to the original parameters, multiplying the intermediate ones by nr. This is 
exactly the method followed for the similarity solutions. For  the super- 
position of two similarity shock waves we have in addition two yj, j = 1, 2, 
corresponding to the two components. The compatibility condition (1.4) 
gives the relation between y~ and Y2; we choose y =  Yl and this com- 
patibility condition determines Y2. For  the periodic solutions the two .vs- are 
complex conjugate, y2=  y*, we still choose y = y ~ ,  [y[ being the free 
parameter, while the compatibility condition gives the phase of 
Y = ]Yl exp(iz). 

In Section 3 we construct the similarity shock-wave solutions of (1.6) 
and study more particularly the positive solutions corresponding to 
infinite-strength shocks. It is found that the ratio of the total mass across 
the shock is larger than 9. 

In Section 4 we build up the superposition of two similarity shock 
waves. We focus our interest on the positive solutions with an almost 
infinite-strength shock. We find that the total mass ratio across the shock is 
larger than 17 and as illustration present a numerical example. These 
solutions have three absolute Maxwellians instead of two for the similarity 
solutions. The supplementary Maxwellian is the equilibrium state. 

In Section 5 we construct the periodic solutions, which, due to 
VR = 0, have one more relation. The positive physical solutions represent 
propagating and damped waves. We present two numerical examples: one 
with many oscillations and a weak damping and the other with a strong 
damping and few oscillations. 

2. EXACT S O L U T I O N S  FOR THE 4-VELOCITY M O D E L  

As said in the introduction, except for a factor 2, Eqs. (1.5) are those 
of the Broadwell model. As a simple pedagogical example, we make  explicit 
here the method leading to the determination of the solutions, while in 
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other sections we shall omit some details. Although positive periodic 
solutions exist for this model, they are not considered for simplicity; the 
interested reader should refer to Ref. 1. There exists an invariance property 
for (1.5): x ~ - + - x ,  No+-+N2, N 1 ~-+N~, which simplifies the study of the 
different cases. 

2.1. Similar i ty  Shock Waves 

We have 

N , = n o i + n j z l ,  A = 1 + d e x p ( y x + p t ) ,  d > 0  

We substitute the ansatz N; into (1.5), and write that the coefficients of 
A -  1 and A-  2 are opposite, while the constant is zero. We find five relations 
among the eight parameters noi, ni, ~', p: 

no(p + 7) = n2(P - 7) = - n i p  =- n2 - non2 = noon2 + no2no - 2nol nl 

n21 = noono2 (2.1) 

We choose the ratio no/n2 = y and noo and no2 as the three free parameters 
and want to express the other parameters in terms of the free ones. The last 
relation (1.1) gives no~. For  the others we introduce intermediate 
parameters nl, p, and ~, which are the ratios of na, p, and 2 by Jr/2 and 
which depend on y alone: 

hi = - 2 y / ( l + y ) ,  - - ~ = h l + ( l + y ) / 2 ,  ~ = f i ( 1 - - y ) / ( l + y )  (2.2) 

We can express n 2 as a function of the free parameters: 

- n 2 = ( l  + y ) [ 4 n m y + ( l  + y ) n o o +  y n o 2 ] / y ( 1 -  y )  2 (2.3) 

Finally, we come back to the original parameters: n o = y n 2 ,  n ~ = ~ l n 2 ,  
p = f i n  2, 7=~n2.  As in Ref. 1, we can find the intervals of the free 
parameters leading to positive solutions. 

We restrict our study to the infinite-Mach shock, for which the 
upstream temperature is zero or no2= 1, h i = 0  for i ~ 2  (the other 
possibility, n0i = 6io, can be deduced using the above mentioned invariance 
property). The expression for n2 in (2.3) is simplified and, assuming 
y < - 1 ,  we find that the densities Ni and the total mass M are positive, 

No = - y [ ( l + y ) / ( l ' y ) ] 2 / A ,  N 2 = Z y ( l + y ) / A ( l + y )  2 7 = ( 1 -  y)/2 

N 2 = l - [ ( l + y ) / ( 1 - y ) ] 2 / 3 ,  M = l - ( l + y ) / 3  y <  - 1  

(2.4) 
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Further, the modulus of the sound speed P/7 = (1 + y)/(1 - y) is less than 
1. Finally, the ratio R of the total mass across the shock is 
R = M(r  = yx + pt ~ - ~  )/M(~ ~ ~ )  = - y  larger than 1. 

2.2. Sum of T w o  Similar i ty  Shock Waves or 
(1 + 1 ) -Dimensional  Shock Waves 

Here Ni = noi + Z nji/A j, zl j = 1 + dj exp(T jX + Pit), dj > O. 
We substitute the ansatz into (1.5) and from the coefficients of A f  ~, 

A f  2, and constant we find the j th  component similarity relation (2.1), 
which we rewrite in another way: 

nZl = noono2, njl(njo + njz) + 2njonj2 =O, pj + nsl + (njo + nj2)/2=O 

7j(nj2 + njo) = pj (n jo-  nj2), n}~ - njons~ = 2nolnjl - noonj2- njono2 

(2.5) 

In addition, the coefficient of (AsAs)-1, j C j,, which must be zero, gives the 
compatibility condition between the j th  and the j ' th  components, 

2n/l nj, l = njon/,2 + nj2nj,o (2.6) 

For the determination we still define yj=njo/nj: and the intermediate 
parameter ~j~ =nj~/nj2 = - 2 y j / ( 1 -  yj), which we substitute into (2.6). We 
find a polynomial of the second order: 

y} + ys(y~,-6yj ,  + 1)/(yj, + 1)+ yj ,=O (2.6') 

If we only have two components j =  1, 2, then (2.5)-(2.6') give 10 
relations among 13 parameters and we still have three free parameters. We 
choose noo, no2, and, for instance, y,  = r/lO/r/12 as the free parameters. First 
from (2.6') we deduce Y2 from Yl 

2yz(1 + y~) = - B + [ B 2 - 4 y ~ ( I + y l ) 2 ]  1/2, B = y ~ - 6 y l + l  (2.7) 

Second, we follow the method of Section 2.1:nj2 is a function of the free 
parameters 

- n j 2 = ( l  + y j ) (4nolYj+ (l + yj)noo+ yjno2) /y j (1-  yj) 2 (2.8) 

Third, we determine njo = yjnj2 and nil = ~j, nj2. Finally, we notice from 
(2.5) that pj and 7j can be deduced once the nji, i=0 ,  1, 2, j =  1, 2, are 
known. 

As for the Broadwell modell model, positive solutions exist; however, 

822/48/3-4-28 
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Fig, 1. Sum of two similarity shock waves: (a) 4-velocity model; (b) 6-velocity model. 
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a complete analytical study is not possible and we must use a computer. 
First we choose the free parameters  such that the asymptotic limits 
Ixl ~ oo of the N~ are positive. Then we use the parameters dj, j = 1, 2, in 
such a way that the positivity be satisfied at t = 0. 

Can we have three similarity components? In that case the three 
parameters yj, j - -  1, 2, 3, must satisfy the three relations (2.6)-(2.6'). It 
turns out that necessarily one of the yj must be equal to - 1 and then the 
relations (2.5) or (2.1) for that component  lead to an impossibility. 

At t = 0, these (1 + 1)-dimensional solutions look like the similarity 
ones with two upstream and downstream limits. However, when t 
increases, we observe deformations of the profils and a third limit occurs, 
corresponding to the Maxwellian relaxation state. 

We can define "almost infinite-strength shock" (see Section 4), for 
which T is of the order of e and e is arbitrarily small but fixed. We can 
always manage the dj constants in the denominators Aj such that positive 
densities N~ exist. The ratio of the total mass across the shock can have any 
finite constant value and can even be very small. For  such a shock we have 
at the upstream no2 = 1, while the noo and no~ are of the order of ~ fixed. We 
notice that in (2.7), when y~ is close to - 1 ,  one of the two Y2 is close to 
zero. Using the relations (2.4) for the two components,  we see that in this 
limiting case, Yl ~ - 1 ,  the two 7j are positive and M has the two limits 1 
and 0 + when Ixl --' oo. 

As an illustration, in Fig. la  we plot the relaxation curves for a shock 
with total mass ratio across the shock R-~ 3. 

3. S I M I L A R I T Y  S H O C K  W A V E S  FOR T H E  6 - V E L O C I T Y  M O D E L  

Here Ni = noi + n]3,  A = 1 + dexp(Tx + pt), d >  O. 
There exists for the system (1.6) an invariance property that allows a 

simplification of the study: if x * - ~ - x ,  then No~--,N 3 and NI~--'N2. 
Substituting the ansatz N~ into (1.6), we find, from the coefficients of A - i ,  
A-2, and constant, six relations among the ten parameters n~,//oi, 7, P: 

no( 7 4- p) =n3( p -  7) = - n l ( 2 p -  7) = n 2 ( - 2 P  + 7) 

/ ' /1/ '/2 - -  //0/"/3 ~ / / 00 / / 3  -[" n 0 3 / / o  - -  n O 2 n l  - - / / 0 1 / ' / 2  

n01/ , /02 ~ / / o o n 0 3  

(3.1) 

There exist four arbitrary parameters, chosen to be the ratio y =-no/n 3 and 
three noi. The last relation (3.1) gives the fourth noi. It is useful to replace 
four relations (3.1) by equivalent ones, 
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nl(no + 3n3) = -2non3,  n2(3no + n3) = -2non3 
(3.1') 

- -4p=nl  +n2+2(no+n3), 7(no+n3)=p(n3--no) 

As in Section 2, we define intermediate parameters ril and n2, which are 
the ratios of n 1 and n 2 by n3 and are functions of y alone: 
r l l=--2y/(y+3) ,r t2=--2y/( l+3y) .  The same property holds for the 
ratios pin3 and ~/n3. Then we can express n3 as a function of the four 
arbitrary parameters: 

n3 = - [(no0 + yn03)(1 + 3y)(3 + y) + 2yno2(1 + 3y) 

+ 2yno1(3 + y)]/[3y(1 + y)2] (3.2) 

It follows that the four n~ are functions of the four arbitrary parameters: 
no = n3 y, nl = ~1n3, and/72 =/'12n3. Finally, the last two relations (3.1') give 
p and ~ when the n~ are determined. 

For the construction of positive solutions, looking at the limits 
[x[ ~ o% we see that both no; and noi+ ng must be positive. It  follows from 
A >~ 1 that if these conditions are satisfied, then N~A = noiA + ni >~ noi + ni 
are positive. The above invariance property is found here with the 
transform y ~ y - l ,  noo ~ no3 , no1 ~ no2 , for which we verify that 
no*-*n3,nl~-~n2, p*-~p, and 7 ~  -~ .  

We discuss the possibility of infinite-strength shocks with T = 0  
upstream. From the definition dMT= ~ N~(v;-  ( v )  )2 = (M 2 _ j2) M (d is 
the dimension and ( v )  the mean velocity), it follows that v~= ( v ) .  This 

happens only if no~ = bi3no3 (or if noi = 6~onoo, which can be deduced, using 
the first case, from the above invariance). 

When no~=623, the expression (3.2) for n 3 is simplified: 
n 3 = - ( 1  + 3y)(3 + y)/3(1 + y)2 and for y < - 3 ,  the densities and the total 
mass are positive. We have 

- N  O N~ N 2 y(1 - -N3)  y 
3 + 1 0 y + 3 y  2 2 + 6 y  6 + 2 y  3 + 1 0 y + 3 y  2 3 A ( l + y )  2 (3.3) 

M = l - ( 1 - y ) Z / A ( y + l ) ,  2 p =  l + y ,  2 7 = 1 - y  

Always for y < - 3 ,  the modulus of the sound speed satisfies the inequality 
1/2 < [P/V[ < 1, while the ratio R = y(3 - y)/(1 + y) of the total mass across 
the shock is larger than 9. [For  the n0i= 6io case, we apply the transform 
y ~ y - 1  and find the positivity for - 1 / 3 < y < 0 ,  sound speed 
1/2 < p/v < 1, and ratio across the shock R = ( 3 y -  1)/y(y + 1) > 9.] Trying 
to understand the origin of the limiting value of 9, we look at the 
degenerate case y = - 3 .  We obtain N o = N 2 = 0 ,  N 3 = l ,  and only 
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N1 = 411 + exp (2x -  t ) ] -1  is nontrivial, leading for M to the limit 1 + 2(4). 
We remark that this limit, 9, can also be obtained by requiring both M > 0 
(i.e., y < - I  or 0 < y < 3 )  and that the modulus of the sound speed 
[P/71 = I(1 + y)/(1 - Y)I be less than the velocity of the flow field, which is 1 
(y < -1) .  Then, for y < - 1  we get R > 9. The important point is that the 
limiting value of 9 can be obtained from the macroscopic quantities. 

It seems worth comparing with the values given by the continuous 
Boltzmann equation for a Maxwellian: 

2 

in d dimensions. Applying the Rankine-Hugoniot jump conditions for a 
steady shock wave in one dimension, we find 

M(v l  ) = const, M ( v l  >2 + MT= const, 

M <  vl >3 + (d+ 2) MT(vl  > = const (3.4) 

These relations are consequence of the conservation laws of mass, 
momentum, and energy. We can relate the upstream and downstream 
macroscopic values. Assuming T =  0 upstream and calling R the ratio of 
the masses across the shock, we obtain from (3.4) the relation 
R 2 - ( d + 2 )  R + d + l = O  or R = d + l  ( R = 3  if d=2) .  As a final remark, 
we notice that the models (1.5) and (1.6) satisfy only mass and momentum 
conservation laws. 

. (1 + 1  ) - D I M E N S I O N A L  S H O C K  W A V E S  FOR T H E  
6 - V E L O C I T Y  M O D E L  

Here N i = n o i + Z  nji/Aj, Aj= 1 +djexp(~jx +pjt), dj>0.  
We substitute the ansatz into (1.6), and from the coefficients of 

constant, A l l ,  and d r 2  we find the j th  component similarity 
relations (3.1), (3.1'), 

njl(njo + 3nj3) = -2njonj3, njz(3njo + nj3) = -2njonj3 

- 4 p j  = nil + nj2 + 2(njo + nj3) 

7j(njo + nj3) = pj(nj3 - njo) 

noonj3 + no3 njo - noznjl - -  H01Hj2 = --nji(2pj + yj) 

(4.1) 

nol no2 ~-~ H00H03 
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In addition, the vanishing of the coefficient of  (AjAj,) -1, j # j ' ,  gives the 
compat ibi l i ty  condit ion between the j t h  and the f t h  components :  

l'ljl glj, 2 At- nj2 Flj, 1 = njOF~j, 3 dl- nj3 Flj, 0 (4.2) 

We follow the same me thod  as for the 4-velocity model.  We define 
Yj = n joins3, nsi = nji= nJnj3 for i = 1, 2, which are functions of the yj alone. 
We rewrite the compat ibi l i ty  condit ion:  

/~jl = - - 2 y j / ( y j - ~ 3 ) ,  r~j2 = - 2 y j ( 3 y j  + 1 ), rljl nj ,  2 -}- ~lj2~j, 1 = y j  -Ji- J j ,  

(4.2') 

The compat ibi l i ty  condi t ion becomes F(y s, Y s ) =  0, a cubic po lynomia l  in 
Ys with y f  cubic coefficients. For  a superposi t ion of two similarity shock 
waves we have one polynomial ,  three polynomials  for a superposi t ion 
j =  1, 2, 3, and so on. Al though for some yj, intervals F(yj, Ys') = 0 can have 
three roots,  it turns out  that  we cannot  have a superposi t ion with more  
than two similarity solutions. We define S = Yl + Y2 and P = y~ Y2, and the 
relation (4.2') becomes 

A 1 = 3 S - 8 ,  

p2A 1 + PA2 + A3=O 

A 2 = 10S 2 + 1 4 S -  8, A 3 = 3S 3 -!- 10S 2 + 3S 
(4.2") 

For  a superposi t ion of two similarity shock waves, (4.1)-(4.2) give 
12 relations a m o n g  the 16noi, nj~, Ps, 7j parameters ,  leaving four 
arbi t rary  parameters .  We choose as free parameters  S =  y~ + Y2 and three 
noi a m o n g  the four ones. First  we find P f rom (4.2"): P =  
I - A 2  T-(A~-4A1A2)l /2]/2A1 and we deduce Yl, Y2, and ~j~ with the help 
of (4.2'), i = 1, 2. Second, as in Section 2, we obta in  nj3 as a function of the 
free parameters :  

ns3 = - [ ( n o o  + 1"/o3 yj)(1 + 3yj)(3 + y j) + 2yjno2(1 + 3yj) + 2yjnm (3 + yj) ]  

x [3yj(1 + yj)2] , (4.3) 

where we use the last relation (4.1) for the determinat ion of the unknown 
no,.. Third, we find all the nji parameters :  nso = ysns3, nii= ~lji'Vlj3 with i = 1, 2; 
finally, the third and the fourth relations (4.1) give the last four pa ramete rs  

pj and 7s, j =  1, 2. 
The previous invariance p roper ty  still arises, with y +-~ y -  1, noo ~ no3, 

no1 <-+ no2, from which we find njo ~ ns3, nil ~ nj2, p ~ p, 7 ~ - 7 ,  and 
M(x, t) = No + N3 + 2(N1 + N2) +-+ M( - x ,  t). 

The asymptot ic  Ix[--+ oo positivity constraints  are more  complicated 
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than in Section 3: (i) If 7172 > 0, necessarily noi > 0 and noi + ~ nji> 0; (ii) if 
7172<0, we must have no i+n j i>0 ,  j = l ,  2. The positivity at t = 0  is 
obtained with conditions on the two d j > 0  parameters of 
ui = di exp(Tjx + pit). 

As for the similarity solutions of Section 3, the superposition of two 
similarity shock waves has in general different rxl ~ ov limits for N~, M, .... 
The macroscopic quantities M, J, and T have a jump between these limits 
(across the shock). At t = 0 or t small the profiles look like those in Sec- 
tion 3, but when t increases we observe deformations of the profiles. The 
half-lines ~ = 7~x + pit = 0 divide the half-plane t > 0, x real into three sub- 
domains in which the ~i have different signs (or when ~ Too, then 
A~ ~ 1, 0). For  large x, t we find three different absolute Maxwellians (AM) 
(here three different constants). Two of them, Ix[ ~ 0% t finite, correspond 
to the upstream and downstream limits. The third AM is different. If 
plp2/7~72<O, it is the limit Ix[ finite and t ~ o o  (equilibrium state). If 
P~P2/7172 > 0, the equilibrium AM coincides with one of the shock limits, 
while the third AM is reached for particular x, t intervals with lengths 
growing to infinity. 

As in the 4-velocity model, we can construct (1 + 1)-dimensional shock 
wave corresponding to an almost infinite-strength shock. Then T is of the 
order of 8 (e arbitrarily small but fixed). 

We begin with the T =  0 case, for which we have either N~ ~ ~3 or 
N i ~  6io (which, using the above transform, can be reduced to the first 
case). Let us assume n0~=6i3: there exists a class of solutions 
S = y I + y 2 <  - 6 ,  - 3 < y ~ <  -1.66, y 2 <  - 3 ,  for which p j < 0 ,  7 j>0 ,  and 
the upstream limit x ~ oo corresponds to T =  0. For this class of solutions 
all n~j are positive except n23 (but t +//23 >0) and nlo, n12 (but n~i+n2z> 0, 
i = 0, 2). However, these solutions are no good, because of negativity. 

For  T-~8, with a small change of the upstream limits, no3 = 1, 
noi = e~>0, i=~ 3 (ei arbitrarily small but fixed), choosing appropriate dj 
values, we can obtain positive solutions. We define 3j = 1 + uj and look at 
the densities No, N2 for t = 0: 

A 1 A 2 N i = e i + ( n l i + n 2 i ) + e i ~ u j + n 2 i u l + u 2 ( e i u l + n l i ) ,  i = 0  and 2 

(4.4) 

Only the last term can be negative for x > 0 large. There exists x o > 0 such 
that N i > 0 for x < Xo. For  a complete positivity it is sufficient to choose 

d 1 > sup[ -n l / / e /exp(  - 71 x0) ] (4.5) 
i 

For these almost infinite-strength shocks we find that the ratio of M across 
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the shock is larger than 17. The limit 17 is obtained with the marginal 
degenerate case Yl = Y3 = - 3 ,  where the two similarity components are 
equal with n l l =  n=l = 4 and M =  1 + 2N1 = 17. 

For  the other possibility, noo = 1, noi = ei, i ~ 0, we use the y ~ y -  1,..., 
previously defined transform. We find - 2 / 3  < S < 0, R > 17, and P1 < 0, but 
7j< 0. As above, choosing appropriate d= constants, then N~ and M are 
positive everywhere. In Fig. lb we present such an example with noo = 1, 
n o l = n o z - - 5 x  10 -5, and no3=25x  10 lo. We observe for t = 0  or t small 
the usual shock profile of the similarity shock waves, but when t increases, 
we see the appearance of a plateau, which becomes larger and larger. We 
find three different AM, corresponding to three x, t subdomains: (i) 
~j = 7ix + pit  < 0, the AM (noe + Z nj~) is both the upstream shock limit and 
the equilibrium state; (ii) ~1 < 0 and ~= >0 ,  the AM (no,.+ nl~) is the inter- 
mediate plateau; and (iii) ~j > 0, the AM is the downstream shock limit. 

5. PERIODIC SOLUTIONS FOR THE 6-VELOCITY M O D E L  

Here N i = n o i + n i / A  +n* /A* ,  A = 1 + d e x p ( T x + p t ) ,  ni=  n~R + 
inia, 7= iTl, p =  pR + ipl. 

5,1. Determinat ion of the Solut ions 

Let us assume that the two similarity shock waves of Section 4 are 
complex conjugate. Then the compatibility condition (4.2)-(4.2') becomes 
a relation between Yl and Y2 = Y*. If we define y = Yl = tYl exp(iz), this 
relation allows us to obtain the phase z from the modulus lYt. If, further, 
the superposition is periodic, then Re ~ = 0 and we have one more relation 
than for the superposition of two real similarity shock waves. We shall 
have only three arbitrary parameters, chosen to be l Yl and two noi among 
the four ones. 

Substituting the ansatz into (1.6), we find the complex similarity 
relations (3.1), (3.1'), coming from the coefficients of A 1, A-2: 

nl(no + 3n3) = --2non3, n2(3no + n3) -= -2non3,  

- 4 p = n l + n 2 + 2 ( n o + n 3 )  7(no+n3)-=-p(n3--no),  

n 1(2p + ~) + noon3 -4- no3n o = noenl + n01 n= (5.1) 

/'/01 nO2 =/'/00/'/03 

There is in addition the compatibility condition between the two complex 
conjugate similarity components, coming from the vanishing of IAI 1: 

Re(n1 n* - non*) = 0 (5.2) 
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We still define y = no/n 3 = [y[ exp(iz), choose lY[ as a free parameter,  and 
want to determine the phase z. For  this we introduce the intermediate 
parameters 

~ = n~/n3 = --2y/(3 + y), ri 2 = --2y/(3y + 1) = n2/n 3 (5.3) 

and find a cubic equation for cos z: 

cos  3 z + [,,5(1 + l yl 2)/3 l yl  ] cos  2 z 

+ [ , ( ] y l 2 + ] y l  2 ) / 4 + 7 / 6 ] c o s z - ( l + [ y 2 { ) / 3 1 y ] = 0  (5.2') 

We apply essentially the same method as in the previous sections. Assum- 
ing that l Yl and two noi are free parameters, the important  step is the deter- 
mination of n 3. Using the third and the fourth relations (5.1), we introduce 
other intermediate parameters, which are functions of I Yl alone: 

~ = p / n 3 =  - [ - ~  + ~2 + 2(1 + y)] /4 ,  ~ = 7 / n 3 = ( 1 - y ) / ( l + y )  (5.4) 

For  periodic solutions we have Re 7 = Re ~n 3 = 0, which is the additional 
relation: 

n3i = n3RTR/ff I (5 .5)  

We notice that (5.1) (5.2), (5.5) give 13 relations for the 16 real parameters 
ni, noi, 7, and p, and consequently we have solutions with three arbitrary 
parameters. The last two relations (5.1), taking into account (5.2')-(5.5), 
give three relations among the noi and n3R: 

n3R/~TI = ( - -  l yl sin z rto3 + ~qlln02 + n z i n m ) / ) .  

= (noo + rto3 lYt cos z - nlRno2 -/ 'lZR Y/01)/] 2 

/'/00//03 ~ /'/01/'/02 

,~ = (2/01 ~- y l ) ( /~ lR~i  - -  9R/~li)  -{- (2f i~  + ~TR)(t~n yi  + r i ~ R ~ )  

/~ = (2fir + 7R)( -~71~,R + 7Rh,~) + (2/31 q- ~i)(/~1i]7i 3i-/'llR~R) (5.6) 

From (5.6) and knowing lY[ and two//0i, we determine both the other two 
n0~ and n3R. From n3r t and (5.5) we find n3~ and it follows that n3 is known 
as a function of the arbitrary parameters. 

Once n3 is known, as in the previous sections, from the intermediate 
parameters we can reconstruct the original ones: no=yn2,  n2=Pi2n3, 
n l = n l n 3 ,  p=fin3,  7 =~]n3 . 
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5.2. An Analytical Solution 

The analytical determination of all the parameters noi, ni, ~, and p is 
so complicated that we must use a computer  for the explicit construction of 
the solutions. However, for l yl = 2 [-or ]y[ = 1/2, because the compatibility 
relation (5.2') is invariant when lyl -~ ly1-1]  and cos z =  1/4, an analytical 
solution exists. We choose noo and n01 as the free parameters that determine 
completely this analytical solution. We obtain for the other no~ and n3R 

n02 = noo(7n0o + 4noa )/(4nol -- 2noo), no3 = no1 noz/noo 
(5.7a) 

n3R = 3(n2~ + 5n~o/8 + 2noono3)/(noo -- 2n01) 

Let us put ~ = _ 1 and for the densities Ni we define h = (Ni-noi ) /n3R and 
get 

~ o = 8 / 3 R e ( l + i ~ x / - ~ / 3 ) 3  -1, ~ =  - 2 R e ( l + i ; x / - ~ / 9 ) A  -~ 

1i2= - 4 / 3  R e ( 1 - i ~ x f l ~ / 1 5 ) 3  ', h 3 = 2 R e ( 1 - i ~ x f - ~ / 9 ) A  -~ 

3 = 1 + d e x p n 3 R [ - - - 3 t / 4 + i ~ x / - ~ / 5  ( x - - 3 t / 4 ) ]  (5.7b) 

As an example, if we choose for the free parameters 0 < noo/2 < no~, then 
from (5.7a), (5.7b), we find n3R<0, and when t ~ ,  3 - ~ 0  and the 
densities N~ ~ noi > 0. 

5.3. Properties of the Periodic Solutions 

For  the asymptotic t ~ ~ positivity, we must either have not> 0 if 
PR > 0 or noi + 2niR > 0 if PR < 0. When these limits are different from zero, 
it is clear that there exists to such that Ni > 0 for t > to. We remark that this 
property, true for the periodic solutions, does not necessarily hold for a 
superposition of real similarity components. For  instance, let us assume 
PR > 0 and consider first the periodic solutions A - 1 _+ 0 when t -~ ~ and 
becomes negligible for large fixed t and x finite or infinite. On the contrary 
when A, p, and 7 are real and t is large and finite, then 3 ~ 1 when 
~ x ~ - ~ .  However, the physical problem is to choose to fixed, for 
instance, to = 0, and to find the conditions on d such that positivity is 
ensured. This was previously done for the Broadwell model, (1) establishing 
appropriate lower bounds on N~ [Z~] 2 n~ l. For  instance, when PR > 0, then 
for t>~ 0 and all x values Ni > 0 is satisfied if, for i =  0, 1, 2, 3, 

]dl > s u p  Xi, X i =  1 + ]nil~not+ [(1 + Ini[/noi) 2 -  1 + 2 ]niRI/no~] ~/2 
i 

(5.8) 
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For instance, for the analytical solution (5.7) with n0o = n01 = 1 and p~ > 0 
we have verified that d =  34(1 + i) leads to positive N; for t >~0 and all x 
values. 

We write down the total mass M = No + N~ + 2(N 1 + N2) and momen- 
tum J = N o - - N 3 + N  ~ --N2, and look at their large-time behavior: M =  
meq + 6M, J = Jeq-[- •J" For  large t, 6M and <SJ are small perturbations, 
while if PR > 0, Meq =///00 +//03 "1- 2(n01 +//02) and Jeq = noo - no3 + no1 - no2 
are the equilibrium states (if PR < 0, we must add 2 Re n; to each no;). In 
both cases we have 

6M~_ 2AMe IPRIt cOS(TIX + pIt + (~M) 
(5.9) 

Oj ~- 2Aje -tp"q' cos(Tix + p~t + (bs) 

with AM and Aj  positive constants and ~bM and ~bj constant phase factors. 
Clearly 6M and 0 j  represent propagating (p~ r 0) and damped (PR r 0) 

plane waves. If the ratio of the absorption coefficient PR to the frequency PI 
is small, we have many effective oscillations. In Fig. 2a, for ]y[=2.9 ,  
no0 = 1, no1 =2.4, we present such a solution with [P~/PI]-~0.08 and we 
observe many oscillations for 6M. 

If Jeq = 0 and pg > 0, we have in addition n o o -  no3 + no1 - no2 = 0; 

(5.6) becomes no2 = noo and 

/'1o3 = no, = (ill ,  - 1 + #fiu/2)/[lY[ cos z - n2R + U(tYl sin z -- fi2i)/2] 

(s.10) 

In that case we have two free parameters JYl and noo. From a numerical 
analysis we find that IPR/PI[ is not small. In Fig. 2b we report an example 
with ]Yl =0.54, noo = 1, and IPR/PII ~ 1.46 and we observe few oscillations 
because the wave is strongly damped. 

6. M O R E  G E N E R A L  P L A N A R  V E L O C I T Y  M O D E L S  

For  the 2r-velocity models with r >/4, the new fact in the algebraic 
structure of the discrete models (1.3) is the existence of independent (not 
proportional)  collision terms: two for r = 4 ,  5; three for r =  6, 7; .... Con- 
sequently, the number of compatibility conditions increases for a super- 
position of two similarity shock waves. For  r = 4, the 8-velocity model, 
counting the number  of parameters (noi, nji, 7;, Pi) versus the number  of 
real relations, we find 18 relations and 19 parameters. From an analytical 
study followed by a numerical analysis, we have not found superposition of 
two similarity shock waves satisfying all the relations. For  r = 5 and the 
superposition of two similarity solutions, the number of parameters is 22, 
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while the number of relations is 20. Always for a superposition of two real 
similarity solutions, let us call P the number or parameters and R the 
number of relations. Then from a crude counting argument we find: (i) 
P = 6 q + 7 a n d R = 8 q + 2 i f r = 2 Q i s e v e n ,  (ii) P = 6 q + 1 0 a n d R = 8 q + 4  
if r = 2q + 1 is odd. In both cases the number of relations increases more 
than the number of parameters. We find P ~< R for r -- 6 if r -- 2q and for 
r = 7 if r = 2q + 1. Finally, we notice that for the periodic solutions we have 
one more relation. 

7. L I M I T S  FOR T H E  M E A N  FREE P A T H  G O I N G  TO ZERO 

In (1.5), (1.6) we divide the collision term by the mean free path e and 
look (9) at the limit e ~ 0. The exact e-dependent solutions are found with 
the changes t, x ~ t/e, x / e  and the limits are the constant AM: one, the 
equilibrium state, for the periodic solutions (t v a0), two for the planar 
shock waves (~ = y x  + p t  ~ -~ oo), and three for the nonplanar ones (three 
subdomains where the ~i= 7ix + p i t  have well-defined signs, as is discussed 
in Section 4). An e expansion around e = 0 is not possible, while a natural 
parameter is e x p ( -  I/e). 

8. C O N C L U S I O N  

We can collect (1 + 1)-dimensional exact solution results for the 2- 
velocity models on a line, 6-velocity in three-dimensional space, and 4- and 
6-velocity in a plane. These exact solutions are linear superpositions of 
similarity shock waves (real or complex conjugate). For more general 
planar models, we notice that when the number of velocities increases, then 
the number of relations to be satisfied by the parameters increases more 
than the number of parameters. 

Perhaps the most interesting physical property of these discrete models 
is to provide explicit solutions for the strong shocks. For  the exact 
solutions, the positivity problem is not trivial; however, we have succeeded 
in the construction of positive solutions with an almost infinite-strength 
shock. 

Recall that positivity is also difficult to handle for the shock solutions 
of the continuous Boltzmann equation (in particular for the infinite-Mach 
shock(9)). In general this problem is solved by taking into account only a 
finite number of moments of the distribution, which is another dis- 
cretization. Here the strong-shock solution found by Broadwell ~3) has been 
generalized in 1 + 1 dimensions for all the above discrete models. 

The periodic solutions represent propagating and damped waves; we 
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have found examples with many oscillations and others with few 
oscillations. 

Also recall that the main difficulties in the hydrodynamic limits of the 
kinetic solutions come from the existence of shock layers, boundary layers, 
and initial layers. We remark that these exact solutions provide explicit 
examples of problems related to layers. 

If we except the 2-velocity models, all the others have generalizations 
in at least two spatial dimensions. For instance, for the 4-velocity model 
[-(1.5) in 1 + 1 dimensions] we have obtained a class of (2 + 1 )-dimensional 
exact solutions, which depend on six parameters, and at present we are 
trying to extract a subclass of positive solutions. 

APPENDIX .  POSSIBLE M U L T I E X P O N E N T I A L  R A T I O N A L  
S O L U T I O N S  

Our aim is to show that the existence of two independent linear dif- 
ferential relations such as those of (1.5) and (1.6) give strong restrictions on 
the possible rational solutions with independent (~iPjr exponential 
uj=djexp(v jx+pj t )  variables. The single-exponential rational solutions 
compatible with the quadratic nonlinearity are the similarity shock waves 
with denominators A = 1 + uj. Any linear superposition leading to fac- 
torized denominators A = H (1 + uj) is possible at the linear level. But other 
single-exponential rational solutions and their linear superposition, leading 
to other factorizations of A, satisfy also the two linear relations. For 
instance, solutions with denominators of the type A p= (1 + u) p, p = 2, 3 ..... 
and their linear superposition are rational solutions satisfying both linear 
relations. However, they are not compatible with the nonlinearity, which 
requires 2p = p + 1 or p = 1. Keeping in mind the necessary limitations of a 
study at the linear level, we disregard factorized denominators. We look at 
the restrictions for possible rational solutions that are not necessarily linear 
superpositions. For instance, A = 1 + u l  +u2, which is possible for the 
peculiar model (6) with one conservation law, is not possible for models 
with two independent linear relations. ~ This is the type of result that we 
want to enlarge. 

Let us assume that three rational N~ defined by 

p p - -1  

N i = n i + M j A ,  A = l + ~ u j ,  M i = n o i +  ~ njiUg (A.la) 
1 1 

7jP~r V i # L  uj:Aconst Vj (A.lb) 

satisfy the two linear independent differential relations 
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(No+bmNm) ,+(No+c , , ,Nm)x=O,  m = l ,  2 (A.2a) 

b,,,#cm, b l c2r  (A.2b) 

We rewrite (A.2a) using (A.la): 

Mo(A t -k Ax) -k- Na(bmA~ + CmAx) -- A(Mo~ + Mo~ + bmMmt q- cruMmy) = 0 

(A.3) 

In a two-dimensional space, the relations (A.lb) are essential. We 
recall ~1) that for p = 2 ,  this relation is violated while for p = 3 ;  the only 
possibility is the factorized A = (1 + ul)(1 + u2). 

Here we push the analysis up to p = 4. Substituting (A.la) into (A.3), 
we have ten (uj, UkUk, ) terms, leading to ten distinct relations if none of 
these terms is proportional and less otherwise. We establish a lemma useful 
for the simplest cases. 

L o m m a  A1. Assuming that for i fixed, i =  1, 2, 3, the three terms 
u~, u4, and u~u4 in the relation (A.3) are not proportional to any one of the 
seven others, then necessarily 

74Pi=P47i 

For the proof we write that the coefficients of the three terms ui, u4, and 
b/i/,/4 are zero; 

(Pi + 7i)(noo --nio) = (b,~pi + CmTi)(rtim --frOm) (A.4a) 

noo(P4 + 74) + nom(bmP4 + Cm74) = 0 (A.4b) 

n i o ( P 4 - p i + 7 4 - 7 i ) + n i m [ b m ( p 4 - p i ) + C m ( 7 4 - T i ) ]  = 0  (A.4c) 

From (A.4a)-(A.4c) we deduce 

noo/nio=(bmp4+Cmy4)/[bm(P4-Pi)+Cm(74-Ti)] ,  m = l ,  2 (A.5a) 

or equivalently (b l c2 -b2c l ) (74Pi -P47 i )  =0.  The first factor is different 
from zero, due to (A.2b), and so the second is zero. 

We discuss the different possibilities: 

(i) None of the (uj, uku~,) are proportional. 

(ii) Only two terms are proportional: either (ii)l one uj and one 
UkUk,, for instance: u3 = const- ul u2, or (ii)2 two UkUk" are proportional; the 
only possibility compatible with the assumptions (A.lb) is 
b/1 U 2 ~--- const./~/3//4. 
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(iii) Fo r  more  (Uj, UkUk,) terms propor t iona l ,  f rom (A. lb)  they 
cannot  be of the (ii)2 type alone or a mixture  of  (ii)l and (ii)2, but  only 
two (ii)~ relations, for instance, u3 = Clu~u2, u 4 = C 2 u l u 3 ,  the Ci being 
constants.  

In case (i), we apply  the l emma  for i =  1, 2, 3 and find 7i/pi= const  
independent  of i =  l, 2, 3, 4. This result contradicts  the assumpt ion  (A.lb).  
In case (ii)~, with P3 = P~ + P2, 73 . . . .  , we apply  the l emma for i =  1, 2 
and we still find the same constant  for the rat io 7i/Pe and all four values. In 
case (iii), we cannot  apply the l emma  because u4 is p ropor t iona l  to u~ u3. In 
principle we have eight relations, but  it turns out  that  the vanishing of the 
coefficient of uzu3 gives an identity. 

Case //3 = C1//1 u 2 , / / 4  = C 2 U l U 3  �9 We have seven independent  relations 
coming f rom (A.3): i =  1, 2 in (A.4a); i =  1, 2, 3 in (A.4c); and two others. 
The first one includes terms propor t iona l  to both  ulu  2 and u3, while the 
second contains both  u4 and u~u3. After a tedious calculat ion we find 

n2o/2 = n3o = nlo(bmpl + Cm~)l)/[bm(Pl -~- P2)  -~ r + 72)3 

and the interesting result 

noo/nlo = [bm(2pl + P2) + Cm(271 + 72)]/[bm(pl + P2) + Cm(7~ + 72)3, 

m = l ,  2 (A.6) 

F r o m  (A.6) and taking into account  (A.2b) we find P172 = 71P2 and with 
the relations between the uj, we get that  (A. lb)  is not  satisfied for 
i =  1,2, 3,4. 

If we consider higher p values, the n u m b e r  of subcases involving terms 
(uj, UkUk,) increases, too. F r o m  a part ial  analysis of the p = 5 case we have 
not  found solutions involving several exponentials  and with A not 
factorized. 
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