Exact ($1+1$)-Dimensional Solutions of Discrete Planar Velocity Boltzmann Models

Henri Cornille ${ }^{1}$

Recieved January 28, 1987; revision received April 22, 1987

Abstract

For discrete velocity Boltzmann models we have found $(1+1)$-dimensional shock waves and periodic solutions that are rational solutions with two exponential variables $\exp \left(\gamma_{i} x+\rho_{i} t\right)$ (space x, time t). These exact solutions are sums of two rational solutions, each with one exponential variable (similarity solutions). We study the planar velocity models and explicitly write the results for the square 4 -velocity and the hexagonal 6 -velocity models introduced by Gatignol.

KEY WORDS: Kinetic theory; discrete Boltzmann models.

1. INTRODUCTION

There is interest in discrete Boltzmann models because one hopes to extract useful information in both kinetic theory and fluid mechanics. Recently ${ }^{(1)}$ for the 2 -velocity Illner ${ }^{(2)}$ model and the 6 -velocity Broadwell ${ }^{(3)}$ model we have obtained exact $(1+1)$-dimensional (space x, time t) solutions. Here we extend these results for a planar hexagonal 6 -velocity model. ${ }^{(4)}$ There exist models with velocities on a line, in a plane, or in three-dimensional space.

The simplest models are the 2 -velocity ones on a line (Carleman, McKean, ${ }^{(5)}$ Illner, etc.). If we except a completely solvable model, ${ }^{(6)}$ the only exact solutions known ${ }^{(7)}$ were the one-dimensional similarity ones or solutions deduced from ordinary differential equations. These 2 -velocity models do not satisfy momentum conservation. Among the other models, ${ }^{(8)}$ the Broadwell model with six velocities in three-dimensional space is the most popular. It has only three or four different densities if the solutions depend upon one spatial coordinate.

[^0]In a mathematical analogy with the $(1+1)$-dimensional integrable case, let us call "multisolitons" the rational solutions with exponential variables $u_{i}=d_{i} \exp \left(\gamma_{i} x+\rho_{i} t\right)$. For the discrete models, the "solitons" are the similarity shock-wave solutions and the "bisolitons" either the superposition of two similarity shock waves or periodic solutions.

For the discrete models let us consider for the densities N_{i} (associated to the discrete velocity \mathbf{v}_{i}) the so-called "planar shock-wave" solutions. These are rational solutions of the type $N_{i}=n_{0 i}+n_{i} / \Delta, \Delta=1+u$, $u=d \exp (\gamma x+\rho t)\left(n_{0 i}, n_{i}, d, \gamma, \rho\right.$ are constants). They have the same analytical structure as the kinks of the integrable systems. They are in fact one-dimensional similarity solutions. Seeking really ($1+1$)-dimensional rational solutions for the discrete models with velocity on a line or in the three-dimensional space, we have found ${ }^{(1)}$ that they are simply a linear superposition of two such similarity shock-wave solutions: $N_{i}=n_{0 i}+\sum n_{j i} / \Delta_{j}, \Delta_{j}=1+u_{j}, u_{j}=d_{j} \exp \left(\gamma_{j} x+\rho_{j} t\right), j=1,2 \quad\left(n_{0 i}, n_{j i}, d_{j}\right.$, γ_{j}, ρ_{j} are constants). This is an astonishing result, because the discrete models are really nonlinear. However, they are in fact weakly nonlinear and they contain linear differential relations.

Here we consider the third class of discrete models, with the velocities in a plane, and, as in the previous cases, we find that the $(1+1)$-dimensional rational solutions are still the superposition of two similarity shockwave solutions. Here we construct such solutions and discuss their physical properties. Trying to understand the origin of this particular class of rational solutions in $1+1$ dimensions, we remark that the discrete models (for more than two discrete velocities) always have at least two independent linear differential relations (conservations laws of mass and momentum). In the Appendix we show that this gives stong restrictions for the possible multiexponential rational solutions. The study cannot be complete. However, we have not found other solutions, involving several exponentials, than the linear superposition of similarity solutions.

Here we consider $2 r(2 r=4,6,8, \ldots)$ velocity models in a plane, ${ }^{(4)}$ introduced by Gatignol, with $\mathbf{v}_{i}+\mathbf{v}_{i+r}=0,\left|\mathbf{v}_{i}\right|=1$. In the x, y spatial coordinate plane we choose $\mathbf{v}_{0}\left(\mathbf{v}_{r}\right)$ to be along the positive (negative) x axis, the angle between \mathbf{v}_{0} and \mathbf{v}_{i} being $i \pi / r$, with $c_{i}=\cos (i \pi / r)$. For each velocity \mathbf{v}_{i} we associate a density N_{i}. For the solutions which depend only on x the momentum $\boldsymbol{J}=\sum N_{i} \mathbf{v}_{i}$ has one x component and necessarily $N_{i}=N_{2 r-i}$, $i=1, \ldots, r-1$, leaving only $r+1$ different densities $N_{i}, i=0, \ldots, r$, among the $2 r$ ones. The equations for these models are

$$
\begin{gathered}
L_{i} N_{i}=\operatorname{Col}_{i}, \quad L_{i}=\partial_{t}+c_{i} \partial_{x} \\
\mu \operatorname{Col}_{i}=-(r-1) N_{i} N_{i+r}+\sum_{m=1}^{r-1} N_{i+m} N_{i+m+r}
\end{gathered}
$$

with lost and gain terms in the collision term Col_{i}. The mass M and momentum J conservation laws are satisfied:

$$
\begin{gather*}
M=N_{0}+N_{r}+2 \sum_{1}^{r-1} N_{i}, \quad J=N_{0}-N_{r}+2 \sum_{1}^{r-1} c_{i} N_{i} \\
M_{t}+J_{x}=0, \quad J_{t}+\left(N_{0}+N_{r}+2 \sum_{1}^{r-1} c_{i}^{2} N_{i}\right)_{x}=0 \tag{1.2}
\end{gather*}
$$

For the study of (1.1) it is convenient to distinguish between odd and even r values

$$
\begin{gather*}
L_{i} N_{i}=L_{r-i} N_{r-i}=\operatorname{Col}_{i}, \quad i=0, \ldots, q-1, \quad \text { for } \quad r=2 q \text { or } r=2 q-1 \\
L_{0} N_{0}+L_{q} N_{q}+\sum_{1}^{q-1} L_{i} N_{i}=0, \quad r=2 q \tag{1.3}\\
0=L_{0} N_{0}+\sum_{1}^{q-1} L_{i} N_{i}, \quad r=2 q-1
\end{gather*}
$$

In the last relation if we replace $L_{j} N_{j}$ by Col_{i}, we obtain a linear relation between the collision terms. The important point is that besides the two linear conservation laws, for $r>2$ other linear differential relations also exist.

Let us consider a linear superposition of similarity shock waves $N_{i}=n_{0 i}+\sum_{j} n_{j j} / \Lambda_{j}, \Lambda_{j}=1+d_{j} \exp \left(\gamma_{j} x+\rho_{j} t\right)$, which we substitute into (1.1). On both sides of $L_{i} N_{i}=\operatorname{Col}_{i}$ we find terms proportional to Δ_{j}^{-1} and Δ_{j}^{-2}, which give the relations of the j th component similarity shock wave. In addition, in Col_{i} we have terms $\left(\Delta_{j} \Delta_{j^{\prime}}\right)^{-1}, j \neq j^{\prime}$, which must vanish and represent the compatibility condition between the j th and the j^{\prime} th components. We have

$$
\begin{equation*}
-(r-1)\left(n_{j i} n_{j^{\prime}+r}+n_{j^{\prime} i} n_{j i+r}\right)+\sum_{1}^{r-1}\left(n_{j i+m} n_{j^{\prime} i+m+r}+n_{j^{\prime}+m} n_{j i+m+r}\right)=0 \tag{1.4}
\end{equation*}
$$

These superpositions of similarity shock waves are solutions if we have verified (i) the compatibility of the constraints (1.4) and (ii) the positivity of the solutions. We discuss the simplest 4 - and 6 -velocity models:
(i) For $r=2$, the 4-velocity model (1.1)-(1.3) gives $N_{3}=N_{1}$ and

$$
\begin{equation*}
N_{0 t}+N_{0 x}=N_{2 t}-N_{2 x}=-N_{1 t}=N_{1}^{2}-N_{0} N_{2} \tag{1.5}
\end{equation*}
$$

This model is studied in Section 2. Except for a factor 2 in $N_{1 t}$, the equations are the same as those of the 6 -velocity Broadwell model with three different densities. ${ }^{(1)}$

There exist positive, physically acceptable solutions of the three following types: similarity shock waves, superpositions of two similarity shock waves, and periodic solutions. Perhaps one of the most interesting properties of the discrete models is to provide explicit kinetic solutions of shock waves. We study the infinite-Mach shock solutions provided by the similarity shock-wave solutions. For an infinite-strength shock the upstream temperature is $T=0$. We find explicit solutions such that the total mass $M=N_{0}+N_{2}+2 N_{1}$ ratio R across the shock is larger than 1 , while the modulus of the sound speed is less than 1 . For a superposition of two similarity shock waves we have obtained solutions with an almost infinite strength at fixed t. Then the upstream temperature is of the order of ε, with ε arbitrarily small but finite. The total mass ratio R across the shock is a positive number and as illustration we report a numerical example with $R \simeq 3$. The physical properties of the exact solutions of this model are similar to those ${ }^{(1)}$ of the 6 -velocity Broadwell model.
(ii) For $r=3$, the 6 -velocity model, which has four different densities, is studied in Sections 3-5. We have $N_{5}=N_{1}$ and $N_{4}=N_{2}$ and (1.3) becomes for $\mu=2$

$$
\begin{equation*}
N_{0 t}+N_{0 x}=N_{3 t}-N_{3 x}=-2 N_{1 t}-N_{1 x}=-2 N_{2 t}+N_{2 x}=N_{1} N_{2}-N_{0} N_{3} \tag{1.6}
\end{equation*}
$$

with the two conservation laws

$$
\begin{gather*}
M=N_{0}+N_{3}+2\left(N_{1}+N_{2}\right), \quad J=N_{0}-N_{3}+N_{1}-N_{2} \tag{1.7}\\
M_{t}+J_{x}=0, \quad J_{t}+\left[N_{0}+N_{3}+\left(N_{1}+N_{2}\right) / 2\right]_{x}=0
\end{gather*}
$$

We have obtained similarity shock waves, superpositions of two similarity shock waves, and periodic solutions that are positive, physically acceptable solutions.

For both models (1.5) and (1.6) the exact solutions are of the following type:
$N_{i}^{(\mathrm{I})}=n_{0 i}+n_{i} / \Delta, \quad N_{i}^{(\mathrm{II})}=n_{0 i}+n_{j i} / \Lambda_{j}, \quad N_{i}^{(\mathrm{II})}=n_{0 i}+2 \operatorname{Re}\left(n_{i} / \Delta\right)$
For $N_{i}^{(\mathrm{I})}$, the similarity shock waves, $\Delta=1+d \exp (\gamma x+\rho t)$ and $n_{0 i}, n_{i}, d>0, \gamma$, and ρ are real; for $N_{i}^{(\mathrm{II})}$, the superposition of two similarity shock waves, $\Delta_{j}=1+d_{j} \exp \left(\gamma_{j} x+\rho_{j} t\right)$ and $n_{0 i}, n_{j i}, d_{j}>0, \gamma_{j}$, and ρ_{j} are
real. For the periodic solutions $N_{i}^{(1 I I)}$, we still have $\Delta=1+d \exp (\gamma x+\rho t)$, but $n_{i}, \gamma=i \gamma_{\mathrm{I}}, \rho=\rho_{\mathrm{R}}+i \rho_{\mathrm{I}}$, and d are complex, while $n_{0 i}$ are real.

The method for the determination of the exact solutions is the same as the previous one. ${ }^{(1)}$ When the N_{i} are introduced into the discrete models equations, we obtain relations between the parameters. We must have more parameters than independent relations and the difference gives the number of free parameters. We define $y=n_{0} / n_{r}\left[n_{r}=n_{2}\right.$ for (1.5) and $n_{r}=n_{3}$ for (1.6)] and choose y as the first free parameter, while some $n_{0 i}$ are the others. Then we introduce intermediate parameters, which are the ratios of $n_{i}, i \neq 0, r ; \gamma, \rho$ (or $n_{j i}, i \neq 0, r ; \gamma_{j}, \rho_{j}$) by n_{r} (or $n_{j r}$). These intermediate parameters are functions of y alone. The crucial point is the determination of n_{r} as a function of the free parameters. Once n_{r} is obtained, we go back to the original parameters, multiplying the intermediate ones by n_{r}. This is exactly the method followed for the similarity solutions. For the superposition of two similarity shock waves we have in addition two $y_{j}, j=1,2$, corresponding to the two components. The compatibility condition (1.4) gives the relation between y_{1} and y_{2}; we choose $y=y_{1}$ and this compatibility condition determines y_{2}. For the periodic solutions the two y_{j} are complex conjugate, $y_{2}=y_{1}^{*}$, we still choose $y=y_{1},|y|$ being the free parameter, while the compatibility condition gives the phase of $y=|y| \exp (i z)$.

In Section 3 we construct the similarity shock-wave solutions of (1.6) and study more particularly the positive solutions corresponding to infinite-strength shocks. It is found that the ratio of the total mass across the shock is larger than 9 .

In Section 4 we build up the superposition of two similarity shock waves. We focus our interest on the positive solutions with an almost infinite-strength shock. We find that the total mass ratio across the shock is larger than 17 and as illustration present a numerical example. These solutions have three absolute Maxwellians instead of two for the similarity solutions. The supplementary Maxwellian is the equilibrium state.

In Section 5 we construct the periodic solutions, which, due to $\gamma_{\mathrm{R}}=0$, have one more relation. The positive physical solutions represent propagating and damped waves. We present two numerical examples: one with many oscillations and a weak damping and the other with a strong damping and few oscillations.

2. EXACT SOLUTIONS FOR THE 4-VELOCITY MODEL

As said in the introduction, except for a factor 2, Eqs. (1.5) are those of the Broadwell model. As a simple pedagogical example, we make explicit here the method leading to the determination of the solutions, while in
other sections we shall omit some details. Although positive periodic solutions exist for this model, they are not considered for simplicity; the interested reader should refer to Ref. 1. There exists an invariance property for (1.5): $x \leftrightarrow-x, N_{0} \leftrightarrow N_{2}, N_{1} \leftrightarrow N_{1}$, which simplifies the study of the different cases.

2.1. Similarity Shock Waves

We have

$$
N_{i}=n_{0 i}+n_{i} / \Delta, \quad \Delta=1+d \exp (\gamma x+\rho t), \quad d>0
$$

We substitute the ansatz N_{i} into (1.5), and write that the coefficients of Δ^{-1} and Δ^{-2} are opposite, while the constant is zero. We find five relations among the eight parameters $n_{0 i}, n_{i}, \gamma, \rho$:

$$
\begin{align*}
n_{0}(\rho+\gamma) & =n_{2}(\rho-\gamma)=-n_{1} \rho=n_{1}^{2}-n_{0} n_{2}=n_{00} n_{2}+n_{02} n_{0}-2 n_{01} n_{1} \\
n_{01}^{2} & =n_{00} n_{02} \tag{2.1}
\end{align*}
$$

We choose the ratio $n_{0} / n_{2}=y$ and n_{00} and n_{02} as the three free parameters and want to express the other parameters in terms of the free ones. The last relation (1.1) gives n_{01}. For the others we introduce intermediate parameters $\bar{n}_{1}, \bar{\rho}$, and $\bar{\gamma}$, which are the ratios of n_{1}, ρ, and γ by n_{2} and which depend on y alone:
$\bar{n}_{1}=-2 y /(1+y), \quad-\bar{\rho}=\bar{n}_{1}+(1+y) / 2, \quad \bar{\gamma}=\bar{\rho}(1-y) /(1+y)$
We can express n_{2} as a function of the free parameters:

$$
\begin{equation*}
-n_{2}=(1+y)\left[4 n_{01} y+(1+y) n_{00}+y n_{02}\right] / y(1-y)^{2} \tag{2.3}
\end{equation*}
$$

Finally, we come back to the original parameters: $n_{0}=y n_{2}, n_{1}=\bar{n}_{1} n_{2}$, $\rho=\bar{\rho} n_{2}, \gamma=\bar{y} n_{2}$. As in Ref. 1, we can find the intervals of the free parameters leading to positive solutions.

We restrict our study to the infinite-Mach shock, for which the upstream temperature is zero or $n_{02}=1, n_{i}=0$ for $i \neq 2$ (the other possibility, $n_{0 i}=\delta_{i 0}$, can be deduced using the above mentioned invariance property). The expression for n_{2} in (2.3) is simplified and, assuming $y<-1$, we find that the densities N_{i} and the total mass M are positive,

$$
\begin{array}{ccc}
N_{0}=-y[(1+y) /(1-y)]^{2} / \Delta, \quad N_{2}=2 y(1+y) / \Delta(1+y)^{2} & & \gamma=(1-y) / 2 \\
& N_{2}=1-[(1+y) /(1-y)]^{2} / \Delta, \quad M=1-(1+y) / \Delta & \tag{2.4}\\
y<-1
\end{array}
$$

Further, the modulus of the sound speed $\rho / \gamma=(1+y) /(1-y)$ is less than 1. Finally, the ratio R of the total mass across the shock is $R=M(\xi=\gamma x+\rho t \rightarrow-\infty) / M(\xi \rightarrow \infty)=-y$ larger than 1.

2.2. Sum of Two Similarity Shock Waves or ($1+1$)-Dimensional Shock Waves

Here $N_{i}=n_{0 i}+\sum n_{j i} / \Delta_{j}, \Delta_{j}=1+d_{j} \exp \left(\gamma_{j} x+\rho_{j} t\right), d_{j}>0$.
We substitute the ansatz into (1.5) and from the coefficients of Δ_{j}^{-1}, Δ_{j}^{-2}, and constant we find the j th component similarity relation (2.1), which we rewrite in another way:

$$
\begin{gather*}
n_{01}^{2}=n_{00} n_{02}, \quad n_{j 1}\left(n_{j 0}+n_{j 2}\right)+2 n_{j 0} n_{j 2}=0, \quad \rho_{j}+n_{j 1}+\left(n_{j 0}+n_{j 2}\right) / 2=0 \\
\gamma_{j}\left(n_{j 2}+n_{j 0}\right)=\rho_{j}\left(n_{j 0}-n_{j 2}\right), \quad n_{j 1}^{2}-n_{j 0} n_{j 2}=2 n_{01} n_{j 1}-n_{00} n_{j 2}-n_{j 0} n_{02} \tag{2.5}
\end{gather*}
$$

In addition, the coefficient of $\left(\Delta_{j} \Delta_{j^{\prime}}\right)^{-1}, j \neq j^{\prime}$, which must be zero, gives the compatibility condition between the j th and the j^{\prime} th components,

$$
\begin{equation*}
2 n_{j 1} n_{j^{\prime} 1}=n_{j 0} n_{j^{\prime} 2}+n_{j 2} n_{j^{\prime} 0} \tag{2.6}
\end{equation*}
$$

For the determination we still define $y_{j}=n_{j 0} / n_{j 2}$ and the intermediate parameter $\bar{n}_{j 1}=n_{j 1} / n_{j 2}=-2 y_{j} /\left(1-y_{j}\right)$, which we substitute into (2.6). We find a polynomial of the second order:

$$
y_{j}^{2}+y_{j}\left(y_{j^{\prime}}^{2}-6 y_{j^{\prime}}+1\right) /\left(y_{j^{\prime}}+1\right)+y_{j^{\prime}}=0
$$

If we only have two components $j=1,2$, then (2.5)-(2.6') give 10 relations among 13 parameters and we still have three free parameters. We choose n_{00}, n_{02}, and, for instance, $y_{1}=n_{10} / n_{12}$ as the free parameters. First from (2.6') we deduce y_{2} from y_{1}

$$
\begin{equation*}
2 y_{2}\left(1+y_{1}\right)=-B \pm\left[B^{2}-4 y_{1}\left(1+y_{1}\right)^{2}\right]^{1 / 2}, \quad B=y_{1}^{2}-6 y_{1}+1 \tag{2.7}
\end{equation*}
$$

Second, we follow the method of Section 2.1: $n_{j 2}$ is a function of the free parameters

$$
\begin{equation*}
-n_{j 2}=\left(1+y_{j}\right)\left(4 n_{01} y_{j}+\left(1+y_{j}\right) n_{00}+y_{j} n_{02}\right) / y_{j}\left(1-y_{j}\right)^{2} \tag{2.8}
\end{equation*}
$$

Third, we determine $n_{j 0}=y_{j} n_{j 2}$ and $n_{j 1}=\bar{n}_{j 1} n_{j 2}$. Finally, we notice from (2.5) that ρ_{j} and γ_{j} can be deduced once the $n_{j i}, i=0,1,2, j=1,2$, are known.

As for the Broadwell modell model, positive solutions exist; however,
(a)

(b)

$n_{00}=1 n_{01}=n_{02}=5 \quad 10^{-5} n_{03}=25 \quad 10^{-10}$
$d_{1}=1 \quad d_{2}=50 \quad y_{1}=-0.266 \quad y_{2}=-0.37$
$n_{40}=-0.41 \quad n_{n 1}=0.3 \quad n_{n 2}=3.25 \quad n_{43}=1.66$
$n_{20}=0.25 \quad n_{21}=-0.19 \quad r_{22}=4.43 \quad r_{23}=-0.6 i$
$r_{4}=-2.51 \quad r_{2}=-1.84 \quad P_{1}=-1.51 \quad \rho_{2}=-084$
$R=174$

Fig. 1. Sum of two similarity shock waves: (a) 4-velocity model; (b) 6-velocity model.
a complete analytical study is not possible and we must use a computer. First we choose the free parameters such that the asymptotic limits $|x| \rightarrow \infty$ of the N_{i} are positive. Then we use the parameters $d_{j}, j=1,2$, in such a way that the positivity be satisfied at $t=0$.

Can we have three similarity components? In that case the three parameters $y_{j}, j=1,2,3$, must satisfy the three relations (2.6)-(2.6'). It turns out that necessarily one of the y_{j} must be equal to -1 and then the relations (2.5) or (2.1) for that component lead to an impossibility.

At $t=0$, these $(1+1)$-dimensional solutions look like the similarity ones with two upstream and downstream limits. However, when t increases, we observe deformations of the profils and a third limit occurs, corresponding to the Maxwellian relaxation state.

We can define "almost infinite-strength shock" (see Section 4), for which T is of the order of ε and ε is arbitrarily small but fixed. We can always manage the d_{j} constants in the denominators A_{j} such that positive densities N_{i} exist. The ratio of the total mass across the shock can have any finite constant value and can even be very small. For such a shock we have at the upstream $n_{02}=1$, while the n_{00} and n_{01} are of the order of ε fixed. We notice that in (2.7), when y_{1} is close to -1 , one of the two y_{2} is close to zero. Using the relations (2.4) for the two components, we see that in this limiting case, $y_{1} \rightarrow-1$, the two γ_{j} are positive and M has the two limits 1 and 0^{+}when $|x| \rightarrow \infty$.

As an illustration, in Fig. 1a we plot the relaxation curves for a shock with total mass ratio across the shock $R \simeq 3$.

3. SIMILARITY SHOCK WAVES FOR THE 6-VELOCITY MODEL

Here $N_{i}=n_{0 i}+n_{i} / \Delta, \Delta=1+d \exp (\gamma x+\rho t), d>0$.
There exists for the system (1.6) an invariance property that allows a simplification of the study: if $x \leftrightarrow-x$, then $N_{0} \leftrightarrow N_{3}$ and $N_{1} \leftrightarrow N_{2}$. Substituting the ansatz N_{i} into (1.6), we find, from the coefficients of Δ^{-1}, Δ^{-2}, and constant, six relations among the ten parameters $n_{i}, n_{0 i}, \gamma, \rho$:

$$
\begin{align*}
n_{0}(\gamma+\rho) & =n_{3}(\rho-\gamma)=-n_{1}(2 \rho-\gamma)=n_{2}(-2 \rho+\gamma) \\
& =n_{1} n_{2}-n_{0} n_{3}=n_{00} n_{3}+n_{03} n_{0}-n_{02} n_{1}-n_{01} n_{2} \tag{3.1}\\
n_{01} n_{02} & =n_{00} n_{03}
\end{align*}
$$

There exist four arbitrary parameters, chosen to be the ratio $y=n_{0} / n_{3}$ and three $n_{0 i}$. The last relation (3.1) gives the fourth $n_{0 i}$. It is useful to replace four relations (3.1) by equivalent ones,

$$
\begin{align*}
n_{1}\left(n_{0}+3 n_{3}\right)=-2 n_{0} n_{3}, & n_{2}\left(3 n_{0}+n_{3}\right) & =-2 n_{0} n_{3} \\
-4 \rho=n_{1}+n_{2}+2\left(n_{0}+n_{3}\right), & \gamma\left(n_{0}+n_{3}\right) & =\rho\left(n_{3}-n_{0}\right)
\end{align*}
$$

As in Section 2, we define intermediate parameters \bar{n}_{1} and \bar{n}_{2}, which are the ratios of n_{1} and n_{2} by n_{3} and are functions of y alone: $\bar{n}_{1}=-2 y /(y+3), \bar{n}_{2}=-2 y /(1+3 y)$. The same property holds for the ratios ρ / n_{3} and γ / n_{3}. Then we can express n_{3} as a function of the four arbitrary parameters:

$$
\begin{align*}
n_{3}= & -\left[\left(n_{00}+y n_{03}\right)(1+3 y)(3+y)+2 y n_{02}(1+3 y)\right. \\
& \left.+2 y n_{01}(3+y)\right] /\left[3 y(1+y)^{2}\right] \tag{3.2}
\end{align*}
$$

It follows that the four n_{i} are functions of the four arbitrary parameters: $n_{0}=n_{3} y, n_{1}=\bar{n}_{1} n_{3}$, and $n_{2}=\bar{n}_{2} n_{3}$. Finally, the last two relations (3.1') give ρ and γ when the n_{i} are determined.

For the construction of positive solutions, looking at the limits $|x| \rightarrow \infty$, we see that both $n_{0 i}$ and $n_{0 i}+n_{i}$ must be positive. It follows from $\Delta \geqslant 1$ that if these conditions are satisfied, then $N_{i} A=n_{0 i} A+n_{i} \geqslant n_{0 i}+n_{i}$ are positive. The above invariance property is found here with the transform $y \leftrightarrow y^{-1}, \quad n_{00} \leftrightarrow n_{03}, n_{01} \leftrightarrow n_{02}$, for which we verify that $n_{0} \leftrightarrow n_{3}, n_{1} \leftrightarrow n_{2}, \rho \leftrightarrow \rho$, and $\gamma \leftrightarrow-\gamma$.

We discuss the possibility of infinite-strength shocks with $T=0$ upstream. From the definition $d M T=\sum N_{i}\left(\mathbf{v}_{i}-\langle\mathbf{v}\rangle\right)^{2}=\left(M^{2}-J^{2}\right) M(d$ is the dimension and $\langle\mathbf{v}\rangle$ the mean velocity), it follows that $\mathbf{v}_{i}=\langle\mathbf{v}\rangle$. This happens only if $n_{0 i}=\delta_{i 3} n_{03}$ (or if $n_{0 i}=\delta_{i 0} n_{00}$, which can be deduced, using the first case, from the above invariance).

When $n_{0 i}=\delta_{i 3}$, the expression (3.2) for n_{3} is simplified: $n_{3}=-(1+3 y)(3+y) / 3(1+y)^{2}$ and for $y<-3$, the densities and the total mass are positive. We have

$$
\begin{gather*}
\frac{-N_{0}}{3+10 y+3 y^{2}}=\frac{N_{1}}{2+6 y}=\frac{N_{2}}{6+2 y}=\frac{y\left(1-N_{3}\right)}{3+10 y+3 y^{2}}=\frac{y}{3 \Delta(1+y)^{2}} \tag{3.3}\\
M=1-(1-y)^{2} / \Delta(y+1), \quad 2 \rho=1+y, \quad 2 \gamma=1-y
\end{gather*}
$$

Always for $y<-3$, the modulus of the sound speed satisfies the inequality $1 / 2<|\rho / \gamma|<1$, while the ratio $R=y(3-y) /(1+y)$ of the total mass across the shock is larger than 9. [For the $n_{0 i}=\delta_{i 0}$ case, we apply the transform $y \rightarrow y^{-1}$ and find the positivity for $-1 / 3<y<0$, sound speed $1 / 2<\rho / \gamma<1$, and ratio across the shock $R=(3 y-1) / y(y+1)>9$.] Trying to understand the origin of the limiting value of 9 , we look at the degenerate case $y=-3$. We obtain $N_{0}=N_{2}=0, N_{3}=1$, and only
$N_{1}=4[1+\exp (2 x-t)]^{-1}$ is nontrivial, leading for M to the limit $1+2(4)$. We remark that this limit, 9 , can also be obtained by requiring both $M>0$ (i.e., $y<-1$ or $0<y<3$) and that the modulus of the sound speed $|\rho / \gamma|=|(1+y) /(1-y)|$ be less than the velocity of the flow field, which is 1 $(y<-1)$. Then, for $y<-1$ we get $R>9$. The important point is that the limiting value of 9 can be obtained from the macroscopic quantities.

It seems worth comparing with the values given by the continuous Boltzmann equation for a Maxwellian:

$$
M(2 \pi T)^{-d / 2} \exp \left\{-\left[\left(\mathbf{v}_{1}-\left\langle\mathbf{v}_{1}\right\rangle\right)^{2}+\sum_{2}^{d} v_{i}^{2}\right] / 2 T\right\}
$$

in d dimensions. Applying the Rankine-Hugoniot jump conditions for a steady shock wave in one dimension, we find

$$
\begin{gather*}
M\left\langle\mathbf{v}_{1}\right\rangle=\text { const }, \quad M\left\langle\mathbf{v}_{1}\right\rangle^{2}+M T=\mathrm{const} \\
M\left\langle\mathbf{v}_{1}\right\rangle^{3}+(d+2) M T\left\langle\mathbf{v}_{1}\right\rangle=\mathrm{const} \tag{3.4}
\end{gather*}
$$

These relations are consequence of the conservation laws of mass, momentum, and energy. We can relate the upstream and downstream macroscopic values. Assuming $T=0$ upstream and calling R the ratio of the masses across the shock, we obtain from (3.4) the relation $R^{2}-(d+2) R+d+1=0$ or $R=d+1(R=3$ if $d=2)$. As a final remark, we notice that the models (1.5) and (1.6) satisfy only mass and momentum conservation laws.

4. (1+1)-DIMENSIONAL SHOCK WAVES FOR THE 6-VELOCITY MODEL

Here $N_{i}=n_{0 i}+\sum n_{j i} / \Delta_{j}, \Delta_{j}=1+d_{j} \exp \left(\gamma_{j} x+\rho_{j} t\right), d_{j}>0$.
We substitute the ansatz into (1.6), and from the coefficients of constant, Δ_{j}^{-1}, and Δ_{j}^{-2} we find the j th component similarity relations (3.1), (3.1'),

$$
\begin{gather*}
n_{j 1}\left(n_{j 0}+3 n_{j 3}\right)=-2 n_{\mathrm{j} 0} n_{j 3}, \quad n_{j 2}\left(3 n_{j 0}+n_{j 3}\right)=-2 n_{j 0} n_{j 3} \\
-4 \rho_{j}=n_{j 1}+n_{j 2}+2\left(n_{j 0}+n_{j 3}\right) \\
\gamma_{j}\left(n_{\mathrm{j} 0}+n_{j 3}\right)=\rho_{j}\left(n_{j 3}-n_{j 0}\right) \tag{4.1}\\
n_{00} n_{j 3}+n_{03} n_{j 0}-n_{02} n_{j 1}-n_{01} n_{j 2}=-n_{j 1}\left(2 \rho_{j}+\gamma_{j}\right) \\
n_{01} n_{02}=n_{00} n_{03}
\end{gather*}
$$

In addition, the vanishing of the coefficient of $\left(\Delta_{j} \Delta_{j^{\prime}}\right)^{-1}, j \neq j^{\prime}$, gives the compatibility condition between the j th and the j^{\prime} th components:

$$
\begin{equation*}
n_{j 1} n_{j^{\prime} 2}+n_{j 2} n_{j^{\prime} 1}=n_{j 0} n_{j^{\prime} 3}+n_{j 3} n_{j^{\prime} 0} \tag{4.2}
\end{equation*}
$$

We follow the same method as for the 4 -velocity model. We define $y_{j}=n_{j 0} / n_{j 3}, \bar{n}_{j i}=n_{j i}=n_{j i} / n_{j 3}$ for $i=1,2$, which are functions of the y_{j} alone. We rewrite the compatibility condition:

$$
\bar{n}_{j 1}=-2 y_{j} /\left(y_{j}+3\right), \quad \bar{n}_{j 2}=-2 y_{j} /\left(3 y_{j}+1\right), \quad \bar{n}_{j 1} \bar{n}_{j^{\prime 2}}+\bar{n}_{j 2} \bar{n}_{j^{\prime} 1}=y_{j}+y_{j^{\prime}}
$$

The compatibility condition becomes $F\left(y_{j}, y_{j^{\prime}}\right)=0$, a cubic polynomial in y_{j} with $y_{j^{\prime}}$ cubic coefficients. For a superposition of two similarity shock waves we have one polynomial, three polynomials for a superposition $j=1,2,3$, and so on. Although for some $y_{j^{\prime}}$ intervals $F\left(y_{j}, y_{j^{\prime}}\right)=0$ can have three roots, it turns out that we cannot have a superposition with more than two similarity solutions. We define $S=y_{1}+y_{2}$ and $P=y_{1} y_{2}$, and the relation (4.2') becomes

$$
\begin{gather*}
P^{2} A_{1}+P A_{2}+A_{3}=0 \\
A_{1}=3 S-8, \quad A_{2}=10 S^{2}+14 S-8, \quad A_{3}=3 S^{3}+10 S^{2}+3 S
\end{gather*}
$$

For a superposition of two similarity shock waves, (4.1)-(4.2) give 12 relations among the $16 n_{0 i}, n_{j i}, \rho_{j}, \gamma_{j}$ parameters, leaving four arbitrary parameters. We choose as free parameters $S=y_{1}+y_{2}$ and three $n_{0 i}$ among the four ones. First we find P from (4.2"): $P=$ $\left[-A_{2} \mp\left(A_{2}^{2}-4 A_{1} A_{2}\right)^{1 / 2}\right] / 2 A_{1}$ and we deduce y_{1}, y_{2}, and $\tilde{n}_{j i}$ with the help of $\left(4.2^{\prime}\right), i=1,2$. Second, as in Section 2, we obtain $n_{j 3}$ as a function of the free parameters:

$$
\begin{align*}
n_{j 3}= & -\left[\left(n_{00}+n_{03} y_{j}\right)\left(1+3 y_{j}\right)\left(3+y_{j}\right)+2 y_{j} n_{02}\left(1+3 y_{j}\right)+2 y_{j} n_{01}\left(3+y_{j}\right)\right] \\
& \times\left[3 y_{j}\left(1+y_{j}\right)^{2}\right]^{-1} \tag{4.3}
\end{align*}
$$

where we use the last relation (4.1) for the determination of the unknown $n_{0 i}$ Third, we find all the $n_{j i}$ parameters: $n_{j 0}=y_{j} n_{j 3}, n_{j i}=\bar{n}_{j i} n_{j 3}$ with $i=1,2$; finally, the third and the fourth relations (4.1) give the last four parameters ρ_{j} and $\gamma_{j}, j=1,2$.

The previous invariance property still arises, with $y \leftrightarrow y^{-1}, n_{00} \leftrightarrow n_{03}$, $n_{01} \leftrightarrow n_{02}$, from which we find $n_{j 0} \leftrightarrow n_{j 3}, n_{j 1} \leftrightarrow n_{j 2}, \rho \leftrightarrow \rho, \gamma \leftrightarrow-\gamma$, and $M(x, t)=N_{0}+N_{3}+2\left(N_{1}+N_{2}\right) \leftrightarrow M(-x, t)$.

The asymptotic $|x| \rightarrow \infty$ positivity constraints are more complicated
than in Section 3: (i) If $\gamma_{1} \gamma_{2}>0$, necessarily $n_{0 i}>0$ and $n_{0 i}+\sum n_{j i}>0$; (ii) if $\gamma_{1} \gamma_{2}<0$, we must have $n_{\mathrm{o} i}+n_{j i}>0, j=1,2$. The positivity at $t=0$ is obtained with conditions on the two $d_{j}>0$ parameters of $u_{i}=d_{i} \exp \left(\gamma_{j} x+\rho_{j} t\right)$.

As for the similarity solutions of Section 3, the superposition of two similarity shock waves has in general different $|x| \rightarrow \infty$ limits for N_{i}, M, \ldots. The macroscopic quantities M, J, and T have a jump between these limits (across the shock). At $t=0$ or t small the profiles look like those in Section 3 , but when t increases we observe deformations of the profiles. The half-lines $\xi_{i}=\gamma_{i} x+\rho_{i} t=0$ divide the half-plane $t>0, x$ real into three subdomains in which the ξ_{i} have different signs (or when $\xi_{i} \rightarrow \mp \infty$, then $\Delta_{i} \rightarrow 1,0$). For large x, t we find three different absolute Maxwellians (AM) (here three different constants). Two of them, $|x| \rightarrow \infty, t$ finite, correspond to the upstream and downstream limits. The third AM is different. If $\rho_{1} \rho_{2} / \gamma_{1} \gamma_{2}<0$, it is the limit $|x|$ finite and $t \rightarrow \infty$ (equilibrium state). If $\rho_{1} \rho_{2} / \gamma_{1} \gamma_{2}>0$, the equilibrium AM coincides with one of the shock limits, while the third AM is reached for particular x, t intervals with lengths growing to infinity.

As in the 4 -velocity model, we can construct $(1+1)$-dimensional shock wave corresponding to an almost infinite-strength shock. Then T is of the order of ε (ε arbitrarily small but fixed).

We begin with the $T=0$ case, for which we have either $N_{i} \rightarrow \delta_{i 3}$ or $N_{i} \rightarrow \delta_{i 0}$ (which, using the above transform, can be reduced to the first case). Let us assume $n_{0 i}=\delta_{i 3}$: there exists a class of solutions $S=y_{1}+y_{2}<-6,-3<y_{1}<-1.66, y_{2}<-3$, for which $\rho_{j}<0, \gamma_{j}>0$, and the upstream limit $x \rightarrow \infty$ corresponds to $T=0$. For this class of solutions all $n_{i j}$ are positive except n_{23} (but $1+n_{23}>0$) and n_{10}, n_{12} (but $n_{1 i}+n_{2 i}>0$, $i=0,2$). However, these solutions are no good, because of negativity.

For $T \simeq \varepsilon$, with a small change of the upstream limits, $n_{03}=1$, $n_{0 i}=\varepsilon_{i}>0, i \neq 3\left(\varepsilon_{i}\right.$ arbitrarily small but fixed), choosing appropriate d_{j} values, we can obtain positive solutions. We define $A_{j}=1+u_{j}$ and look at the densities N_{0}, N_{2} for $t=0$:

$$
\begin{equation*}
\Delta_{1} \Delta_{2} N_{i}=\varepsilon_{i}+\left(n_{1 i}+n_{2 i}\right)+\varepsilon_{i} \sum u_{j}+n_{2 i} u_{1}+u_{2}\left(\varepsilon_{i} u_{1}+n_{1 i}\right), \quad i=0 \text { and } 2 \tag{4.4}
\end{equation*}
$$

Only the last term can be negative for $x>0$ large. There exists $x_{0}>0$ such that $N_{i}>0$ for $x<x_{0}$. For a complete positivity it is sufficient to choose

$$
\begin{equation*}
d_{1}>\sup _{i}\left[-n_{1 i} / \varepsilon_{i} \exp \left(-\gamma_{1} x_{0}\right)\right] \tag{4.5}
\end{equation*}
$$

For these almost infinite-strength shocks we find that the ratio of M across
the shock is larger than 17 . The limit 17 is obtained with the marginal degenerate case $y_{1}=y_{3}=-3$, where the two similarity components are equal with $n_{11}=n_{21}=4$ and $M=1+2 N_{1}=17$.

For the other possibility, $n_{00}=1, n_{0 i}=\varepsilon_{i}, i \neq 0$, we use the $y \rightarrow y^{-1}, \ldots$, previously defined transform. We find $-2 / 3<S<0, R>17$, and $\rho_{j}<0$, but $\gamma_{j}<0$. As above, choosing appropriate d_{2} constants, then N_{i} and M are positive everywhere. In Fig. 1b we present such an example with $n_{00}=1$, $n_{01}=n_{02}=5 \times 10^{-5}$, and $n_{03}=25 \times 10^{-10}$. We observe for $t=0$ or t small the usual shock profile of the similarity shock waves, but when t increases, we see the appearance of a plateau, which becomes larger and larger. We find three different AM , corresponding to three x, t subdomains: (i) $\xi_{j}=\gamma_{j} x+\rho_{j} t<0$, the AM $\left(n_{0 i}+\sum n_{j i}\right)$ is both the upstream shock limit and the equilibrium state; (ii) $\xi_{1}<0$ and $\xi_{2}>0$, the $\mathrm{AM}\left(n_{0 i}+n_{1 i}\right)$ is the intermediate plateau; and (iii) $\xi_{j}>0$, the AM is the downstream shock limit.

5. PERIODIC SOLUTIONS FOR THE 6-VELOCITY MODEL

Here $\quad N_{i}=n_{0 i}+n_{i} / \Delta+n_{i}^{*} / \Delta^{*}, \quad \Delta=1+d \exp (\gamma x+\rho t), \quad n_{i}=n_{i \mathrm{R}}+$ $i n_{\mathrm{II}}, \gamma=i \gamma_{\mathrm{I}}, \rho=\rho_{\mathrm{R}}+i \rho_{\mathrm{I}}$.

5.1. Determination of the Solutions

Let us assume that the two similarity shock waves of Section 4 are complex conjugate. Then the compatibility condition (4.2)-(4.2') becomes a relation between y_{1} and $y_{2}=y_{1}^{*}$. If we define $y=y_{1}=|y| \exp (i z)$, this relation allows us to obtain the phase z from the modulus $|y|$. If, further, the superposition is periodic, then $\operatorname{Re} \gamma=0$ and we have one more relation than for the superposition of two real similarity shock waves. We shall have only three arbitrary parameters, chosen to be $|y|$ and two $n_{0 i}$ among the four ones.

Substituting the ansatz into (1.6), we find the complex similarity relations (3.1), (3.1'), coming from the coefficients of Δ^{-1}, Δ^{-2} :

$$
\begin{gather*}
n_{1}\left(n_{0}+3 n_{3}\right)=-2 n_{0} n_{3}, \quad n_{2}\left(3 n_{0}+n_{3}\right)=-2 n_{0} n_{3}, \\
-4 \rho=n_{1}+n_{2}+2\left(n_{0}+n_{3}\right) \quad \gamma\left(n_{0}+n_{3}\right)=\rho\left(n_{3}-n_{0}\right), \\
n_{1}(2 \rho+\gamma)+n_{00} n_{3}+n_{03} n_{0}=n_{02} n_{1}+n_{01} n_{2} \tag{5.1}\\
n_{01} n_{02}=n_{00} n_{03}
\end{gather*}
$$

There is in addition the compatibility condition between the two complex conjugate similarity components, coming from the vanishing of $|A|^{-1}$:

$$
\begin{equation*}
\operatorname{Re}\left(n_{1} n_{2}^{*}-n_{0} n_{3}^{*}\right)=0 \tag{5.2}
\end{equation*}
$$

We still define $y=n_{0} / n_{3}=|y| \exp (i z)$, choose $|y|$ as a free parameter, and want to determine the phase z. For this we introduce the intermediate parameters

$$
\begin{equation*}
\bar{n}_{1}=n_{1} / n_{3}=-2 y /(3+y), \quad \bar{n}_{2}=-2 y /(3 y+1)=n_{2} / n_{3} \tag{5.3}
\end{equation*}
$$

and find a cubic equation for $\cos z$:

$$
\begin{align*}
& \cos ^{3} z+\left[5\left(1+|y|^{2}\right) / 3|y|\right] \cos ^{2} z \\
& \quad+\left[\left(|y|^{2}+|y|^{-2}\right) / 4+7 / 6\right] \cos z-\left(1+\left|y^{2}\right|\right) / 3|y|=0
\end{align*}
$$

We apply essentially the same method as in the previous sections. Assuming that $|y|$ and two $n_{0 i}$ are free parameters, the important step is the determination of n_{3}. Using the third and the fourth relations (5.1), we introduce other intermediate parameters, which are functions of $|y|$ alone:

$$
\begin{equation*}
\bar{\rho}=\rho / n_{3}=-\left[\bar{n}_{1}+\bar{n}_{2}+2(1+y)\right] / 4, \quad \bar{\gamma}=\gamma / n_{3}=(1-y) /(1+y) \tag{5.4}
\end{equation*}
$$

For periodic solutions we have $\operatorname{Re} \gamma=\operatorname{Re} \bar{\gamma} n_{3}=0$, which is the additional relation:

$$
\begin{equation*}
n_{3 \mathrm{I}}=n_{3 \mathrm{R}} \bar{\gamma}_{\mathrm{R}} / \bar{\gamma}_{\mathrm{I}} \tag{5.5}
\end{equation*}
$$

We notice that (5.1) (5.2), (5.5) give 13 relations for the 16 real parameters $n_{i}, n_{0 i}, \gamma$, and ρ, and consequently we have solutions with three arbitrary parameters. The last two relations (5.1), taking into account (5.2')-(5.5), give three relations among the $n_{0 i}$ and $n_{3 \mathrm{R}}$:

$$
\begin{align*}
n_{3 \mathrm{R}} / \bar{\gamma}_{\mathrm{I}} & =\left(-|y| \sin z n_{03}+\bar{n}_{1 \mathrm{I}} n_{02}+\bar{n}_{2 \mathrm{I}} n_{01}\right) / \lambda \\
& =\left(n_{00}+n_{03}|y| \cos z-\bar{n}_{1 \mathrm{R}} n_{02}-\bar{n}_{2 \mathrm{R}} n_{01}\right) / \mu \\
n_{00} n_{03} & =n_{01} n_{02} \\
\lambda & =\left(2 \bar{\rho}_{\mathrm{I}}+\bar{\gamma}_{\mathrm{I}}\right)\left(\bar{n}_{1 \mathrm{R}} \bar{\gamma}_{\mathrm{I}}-\bar{\gamma}_{\mathrm{R}} \bar{n}_{1 \mathrm{I}}\right)+\left(2 \bar{\rho}_{\mathrm{R}}+\bar{\gamma}_{\mathrm{R}}\right)\left(\bar{n}_{1 \mathrm{I}} \bar{\gamma}_{\mathrm{I}}+\bar{n}_{1 \mathrm{R}} \bar{\gamma}_{1 \mathrm{R}}\right) \\
\mu & =\left(2 \bar{\rho}_{\mathrm{R}}+\bar{\gamma}_{\mathrm{R}}\right)\left(-\bar{\gamma}_{1 \mathrm{I}} \bar{n}_{1 \mathrm{R}}+\bar{\gamma}_{\mathrm{R}} \bar{n}_{1 \mathrm{I}}\right)+\left(2 \bar{\rho}_{\mathrm{I}}+\bar{\gamma}_{\mathrm{I}}\right)\left(\bar{n}_{11} \bar{\gamma}_{\mathrm{I}}+\bar{n}_{1 \mathrm{R}} \bar{\gamma}_{\mathrm{R}}\right) \tag{5.6}
\end{align*}
$$

From (5.6) and knowing $|y|$ and two $n_{0 i}$, we determine both the other two $n_{0 i}$ and $n_{3 \mathrm{R}}$. From $n_{3 \mathrm{R}}$ and (5.5) we find n_{31} and it follows that n_{3} is known as a function of the arbitrary parameters.

Once n_{3} is known, as in the previous sections, from the intermediate parameters we can reconstruct the original ones: $n_{0}=y n_{2}, n_{2}=\bar{n}_{2} n_{3}$, $n_{1}=\bar{n}_{1} n_{3}, \rho=\bar{\rho} n_{3}, \gamma=\bar{\gamma} n_{3}$.

5.2. An Analytical Solution

The analytical determination of all the parameters $n_{0 i}, n_{i}, \gamma$, and ρ is so complicated that we must use a computer for the explicit construction of the solutions. However, for $|y|=2$ [or $|y|=1 / 2$, because the compatibility relation (5.2') is invariant when $\left.|y| \rightarrow|y|^{-1}\right]$ and $\cos z=1 / 4$, an analytical solution exists. We choose n_{00} and n_{01} as the free parameters that determine completely this analytical solution. We obtain for the other $n_{0 i}$ and $n_{3 \mathrm{R}}$

$$
\begin{gather*}
n_{02}=n_{00}\left(7 n_{00}+4 n_{01}\right) /\left(4 n_{01}-2 n_{00}\right), \quad n_{03}=n_{01} n_{02} / n_{00} \\
n_{3 \mathrm{R}}=3\left(n_{01}^{2}+5 n_{00}^{2} / 8+2 n_{00} n_{03}\right) /\left(n_{00}-2 n_{01}\right) \tag{5.7a}
\end{gather*}
$$

Let us put $\zeta= \pm 1$ and for the densities N_{i} we define $\hat{n}=\left(N_{i}-n_{0 i}\right) / n_{3 \mathrm{R}}$ and get

$$
\begin{gather*}
\hat{n}_{0}=8 / 3 \operatorname{Re}(1+i \zeta \sqrt{15} / 3) \Delta^{-1}, \quad \hat{n}_{1}=-2 \operatorname{Re}(1+i \zeta \sqrt{15} / 9) \Delta^{-1} \\
\hat{n}_{2}=-4 / 3 \operatorname{Re}(1-i \zeta \sqrt{15} / 15) \Delta^{-1}, \quad \hat{n}_{3}=2 \operatorname{Re}(1-i \zeta \sqrt{15} / 9) \Delta^{-1} \\
\Delta=1+d \exp n_{3 \mathrm{R}}[-3 t / 4+i \zeta \sqrt{15} / 5(x-3 t / 4)] \tag{5.7b}
\end{gather*}
$$

As an example, if we choose for the free parameters $0<n_{00} / 2<n_{01}$, then from (5.7a), (5.7b), we find $n_{3 \mathrm{R}}<0$, and when $t \rightarrow \infty, \Delta^{-1} \rightarrow 0$ and the densities $N_{i} \rightarrow n_{0 i}>0$.

5.3. Properties of the Periodic Solutions

For the asymptotic $t \rightarrow \infty$ positivity, we must either have $n_{0 i}>0$ if $\rho_{\mathrm{R}}>0$ or $n_{0 i}+2 n_{i \mathrm{R}}>0$ if $\rho_{\mathrm{R}}<0$. When these limits are different from zero, it is clear that there exists t_{0} such that $N_{i}>0$ for $t>t_{0}$. We remark that this property, true for the periodic solutions, does not necessarily hold for a superposition of real similarity components. For instance, let us assume $\rho_{\mathrm{R}}>0$ and consider first the periodic solutions $A^{-1} \rightarrow 0$ when $t \rightarrow \infty$ and becomes negligible for large fixed t and x finite or infinite. On the contrary when Δ, ρ, and γ are real and t is large and finite, then $\Delta \rightarrow 1$ when $\gamma x \rightarrow-\infty$. However, the physical problem is to choose t_{0} fixed, for instance, $t_{0}=0$, and to find the conditions on d such that positivity is ensured. This was previously done for the Broadwell model, ${ }^{(1)}$ establishing appropriate lower bounds on $N_{i}|\Delta|^{2} n_{0 i}^{-1}$. For instance, when $\rho_{\mathrm{R}}>0$, then for $t \geqslant 0$ and all x values $N_{i}>0$ is satisfied if, for $i=0,1,2,3$,

$$
\begin{equation*}
|d|>\sup X_{i}, \quad X_{i}=1+\left|n_{i}\right| / n_{0 i}+\left[\left(1+\left|n_{i}\right| / n_{0 i}\right)^{2}-1+2\left|n_{1 \mathrm{R}}\right| / n_{0 i}\right]^{1 / 2} \tag{5.8}
\end{equation*}
$$

Fig. 2. Periodic solutions with (a) $J_{\mathrm{eq}} \neq 0$, (b) $J_{\mathrm{eq}}=0$.

For instance, for the analytical solution (5.7) with $n_{00}=n_{01}=1$ and $\rho_{\mathrm{R}}>0$ we have verified that $d=34(1+i)$ leads to positive N_{i} for $t \geqslant 0$ and all x values.

We write down the total mass $M=N_{0}+N_{3}+2\left(N_{1}+N_{2}\right)$ and momentum $J=N_{0}-N_{3}+N_{1}-N_{2}$, and look at their large-time behavior: $M=$ $M_{\text {eq }}+\delta M, J=J_{\text {eq }}+\delta J$. For large $t, \delta M$ and δJ are small perturbations, while if $\rho_{\mathrm{R}}>0, M_{\mathrm{eq}}=n_{00}+n_{03}+2\left(n_{01}+n_{02}\right)$ and $J_{\mathrm{eq}}=n_{00}-n_{03}+n_{01}-n_{02}$ are the equilibrium states (if $\rho_{\mathrm{R}}<0$, we must add $2 \operatorname{Re} n_{i}$ to each $n_{0 i}$). In both cases we have

$$
\begin{align*}
\delta M & \simeq 2 A_{M} e^{-\left|\rho_{\mathrm{R}}\right| t} \cos \left(\gamma_{\mathrm{I}} x+\rho_{\mathrm{I}} t+\phi_{M}\right) \\
\delta_{J} & \simeq 2 A_{\mathrm{J}} e^{-\left|\rho_{\mathrm{R}}\right| t} \cos \left(\gamma_{\mathrm{I}} x+\rho_{\mathrm{I}} t+\phi_{J}\right) \tag{5.9}
\end{align*}
$$

with A_{M} and A_{J} positive constants and ϕ_{M} and ϕ_{J} constant phase factors.
Clearly δ_{M} and δ_{J} represent propagating $\left(\rho_{\mathrm{I}} \neq 0\right)$ and damped $\left(\rho_{\mathrm{R}} \neq 0\right)$ plane waves. If the ratio of the absorption coefficient ρ_{R} to the frequency ρ_{I} is small, we have many effective oscillations. In Fig. 2a, for $|y|=2.9$, $n_{00}=1, n_{01}=2.4$, we present such a solution with $\left|\rho_{\mathrm{R}} / \rho_{\mathrm{I}}\right| \simeq 0.08$ and we observe many oscillations for δM.

If $J_{\text {eq }}=0$ and $\rho_{\mathrm{R}}>0$, we have in addition $n_{00}-n_{03}+n_{01}-n_{02}=0$; (5.6) becomes $n_{02}=n_{00}$ and

$$
\begin{equation*}
n_{03}=n_{01}=\left(\bar{n}_{1 \mathrm{R}}-1+\mu \bar{n}_{1 \mathrm{I}} / \lambda\right) /\left[|y| \cos z-\bar{n}_{2 \mathrm{R}}+\mu\left(|y| \sin z-\bar{n}_{2 \mathrm{I}}\right) / \lambda\right] \tag{5.10}
\end{equation*}
$$

In that case we have two free parameters $|y|$ and n_{00}. From a numerical analysis we find that $\left|\rho_{\mathrm{R}} / \rho_{\mathrm{I}}\right|$ is not small. In Fig. 2 b we report an example with $|y|=0.54, n_{00}=1$, and $\left|\rho_{\mathrm{R}} / \rho_{\mathrm{l}}\right| \simeq 1.46$ and we observe few oscillations because the wave is strongly damped.

6. MORE GENERAL PLANAR VELOCITY MODELS

For the $2 r$-velocity models with $r \geqslant 4$, the new fact in the algebraic structure of the discrete models (1.3) is the existence of independent (not proportional) collision terms: two for $r=4,5$; three for $r=6,7 ; \ldots$. Consequently, the number of compatibility conditions increases for a superposition of two similarity shock waves. For $r=4$, the 8 -velocity model, counting the number of parameters $\left(n_{0 i}, n_{j i}, \gamma_{i}, \rho_{i}\right)$ versus the number of real relations, we find 18 relations and 19 parameters. From an analytical study followed by a numerical analysis, we have not found superposition of two similarity shock waves satisfying all the relations. For $r=5$ and the superposition of two similarity solutions, the number of parameters is 22 ,
while the number of relations is 20 . Always for a superposition of two real similarity solutions, let us call P the number or parameters and R the number of relations. Then from a crude counting argument we find: (i) $P=6 q+7$ and $R=8 q+2$ if $r=2 Q$ is even, (ii) $P=6 q+10$ and $R=8 q+4$ if $r=2 q+1$ is odd. In both cases the number of relations increases more than the number of parameters. We find $P \leqslant R$ for $r=6$ if $r=2 q$ and for $r=7$ if $r=2 q+1$. Finally, we notice that for the periodic solutions we have one more relation.

7. LIMITS FOR THE MEAN FREE PATH GOING TO ZERO

In (1.5), (1.6) we divide the collision term by the mean free path ε and look ${ }^{(9)}$ at the limit $\varepsilon \rightarrow 0$. The exact ε-dependent solutions are found with the changes $t, x \rightarrow t / \varepsilon, x / \varepsilon$ and the limits are the constant AM: one, the equilibrium state, for the periodic solutions ($t \neq 0$), two for the planar shock waves $(\xi=\gamma x+\rho t \rightarrow \mp \infty)$, and three for the nonplanar ones (three subdomains where the $\xi_{i}=\gamma_{i} x+\rho_{i} t$ have well-defined signs, as is discussed in Section 4). An ε expansion around $\varepsilon=0$ is not possible, while a natural parameter is $\exp (-1 / \varepsilon)$.

8. CONCLUSION

We can collect ($1+1$)-dimensional exact solution results for the 2 velocity models on a line, 6 -velocity in three-dimensional space, and 4 - and 6 -velocity in a plane. These exact solutions are linear superpositions of similarity shock waves (real or complex conjugate). For more general planar models, we notice that when the number of velocities increases, then the number of relations to be satisfied by the parameters increases more than the number of parameters.

Perhaps the most interesting physical property of these discrete models is to provide explicit solutions for the strong shocks. For the exact solutions, the positivity problem is not trivial; however, we have succeeded in the construction of positive solutions with an almost infinite-strength shock.

Recall that positivity is also difficult to handle for the shock solutions of the continuous Boltzmann equation (in particular for the infinite-Mach shock ${ }^{(9)}$). In general this problem is solved by taking into account only a finite number of moments of the distribution, which is another discretization. Here the strong-shock solution found by Broadwell ${ }^{(3)}$ has been generalized in $1+1$ dimensions for all the above discrete models.

The periodic solutions represent propagating and damped waves; we
have found examples with many oscillations and others with few oscillations.

Also recall that the main difficulties in the hydrodynamic limits of the kinetic solutions come from the existence of shock layers, boundary layers, and initial layers. We remark that these exact solutions provide explicit examples of problems related to layers.

If we except the 2 -velocity models, all the others have generalizations in at least two spatial dimensions. For instance, for the 4 -velocity model [(1.5) in $1+1$ dimensions] we have obtained a class of $(2+1)$-dimensional exact solutions, which depend on six parameters, and at present we are trying to extract a subclass of positive solutions.

APPENDIX. POSSIBLE MULTIEXPONENTIAL RATIONAL SOLUTIONS

Our aim is to show that the existence of two independent linear differential relations such as those of (1.5) and (1.6) give strong restrictions on the possible rational solutions with independent $\left(\gamma_{i} \rho_{j} \neq \gamma_{j} \rho_{i}\right)$ exponential $u_{j}=d_{j} \exp \left(\gamma_{j} x+\rho_{j} t\right)$ variables. The single-exponential rational solutions compatible with the quadratic nonlinearity are the similarity shock waves with denominators $\Delta=1+u_{j}$. Any linear superposition leading to factorized denominators $\Delta=\Pi\left(1+u_{j}\right)$ is possible at the linear level. But other single-exponential rational solutions and their linear superposition, leading to other factorizations of Δ, satisfy also the two linear relations. For instance, solutions with denominators of the type $A^{p}=(1+u)^{p}, p=2,3, \ldots$, and their linear superposition are rational solutions satisfying both linear relations. However, they are not compatible with the nonlinearity, which requires $2 p=p+1$ or $p=1$. Keeping in mind the necessary limitations of a study at the linear level, we disregard factorized denominators. We look at the restrictions for possible rational solutions that are not necessarily linear superpositions. For instance, $\Delta=1+u_{1}+u_{2}$, which is possible for the peculiar model ${ }^{(6)}$ with one conservation law, is not possible for models with two independent linear relations. ${ }^{(1)}$ This is the type of result that we want to enlarge.

Let us assume that three rational N_{i} defined by

$$
\begin{gather*}
N_{i}=n_{i}+M_{i} / \Delta, \quad \Delta=1+\sum_{1}^{p} u_{j}, \quad M_{i}=n_{0 i}+\sum_{1}^{p-1} n_{j i} u_{j} \tag{A.1a}\\
\gamma_{j} \rho_{i} \neq \gamma_{i} \rho_{j} \quad \forall i \neq j, \quad u_{j} \neq \mathrm{const} \quad \forall j \tag{A.1b}
\end{gather*}
$$

satisfy the two linear independent differential relations

$$
\begin{gather*}
\left(N_{0}+b_{m} N_{m}\right)_{t}+\left(N_{0}+c_{m} N_{m}\right)_{x}=0, \quad m=1,2 \tag{A.2a}\\
b_{m} \neq c_{m}, \quad b_{1} c_{2} \neq b_{2} c_{1} \tag{A.2b}
\end{gather*}
$$

We rewrite (A.2a) using (A.1a):

$$
\begin{equation*}
M_{0}\left(\Delta_{t}+A_{x}\right)+N_{1}\left(b_{m} \Delta_{t}+c_{m} \Delta_{x}\right)-A\left(M_{0 t}+M_{0 x}+b_{m} M_{m t}+c_{m} M_{m x}\right)=0 \tag{A.3}
\end{equation*}
$$

In a two-dimensional space, the relations (A.1b) are essential. We recall ${ }^{(1)}$ that for $p=2$, this relation is violated while for $p=3$; the only possibility is the factorized $\Delta=\left(1+u_{1}\right)\left(1+u_{2}\right)$.

Here we push the analysis up to $p=4$. Substituting (A.1a) into (A.3), we have ten ($u_{j}, u_{k} u_{k^{\prime}}$) terms, leading to ten distinct relations if none of these terms is proportional and less otherwise. We establish a lemma useful for the simplest cases.

Lemma A1. Assuming that for i fixed, $i=1,2,3$, the three terms u_{i}, u_{4}, and $u_{i} u_{4}$ in the relation (A.3) are not proportional to any one of the seven others, then necessarily

$$
\gamma_{4} \rho_{i}=\rho_{4} \gamma_{i}
$$

For the proof we write that the coefficients of the three terms u_{i}, u_{4}, and $u_{i} u_{4}$ are zero;

$$
\begin{gather*}
\left(\rho_{i}+\gamma_{i}\right)\left(n_{00}-n_{i 0}\right)=\left(b_{m} \rho_{i}+c_{m} \gamma_{i}\right)\left(n_{i m}-n_{0 m}\right) \tag{A.4a}\\
n_{00}\left(\rho_{4}+\gamma_{4}\right)+n_{0 m}\left(b_{m} \rho_{4}+c_{m} \gamma_{4}\right)=0 \tag{A.4b}\\
n_{i 0}\left(\rho_{4}-\rho_{i}+\gamma_{4}-\gamma_{i}\right)+n_{i m}\left[b_{m}\left(\rho_{4}-\rho_{i}\right)+c_{m}\left(\gamma_{4}-\gamma_{i}\right)\right]=0 \tag{A.4c}
\end{gather*}
$$

From (A.4a)-(A.4c) we deduce

$$
\begin{equation*}
n_{00} / n_{i 0}=\left(b_{m} \rho_{4}+c_{m} \gamma_{4}\right) /\left[b_{m}\left(\rho_{4}-\rho_{i}\right)+c_{m}\left(\gamma_{4}-\gamma_{i}\right)\right], \quad m=1,2 \tag{A.5a}
\end{equation*}
$$

or equivalently $\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(\gamma_{4} \rho_{i}-\rho_{4} \gamma_{i}\right)=0$. The first factor is different from zero, due to (A.2b), and so the second is zero.

We discuss the different possibilities:
(i) None of the $\left(u_{j}, u_{k} u_{k^{\prime}}\right)$ are proportional.
(ii) Only two terms are proportional: either (ii) $)_{1}$ one u_{j} and one $u_{k} u_{k^{\prime}}$, for instance: $u_{3}=$ const $\cdot u_{1} u_{2}$, or (ii) $)_{2}$ two $u_{k} u_{\mathrm{k}^{\prime}}$ are proportional; the only possibility compatible with the assumptions (A.1b) is $u_{1} u_{2}=$ const $\cdot u_{3} u_{4}$.
(iii) For more $\left(u_{j}, u_{k} u_{k^{\prime}}\right)$ terms proportional, from (A.1b) they cannot be of the (ii) $)_{2}$ type alone or a mixture of (ii) $)_{1}$ and (ii) $)_{2}$, but only two (ii) $)_{1}$ relations, for instance, $u_{3}=C_{1} u_{1} u_{2}, u_{4}=C_{2} u_{1} u_{3}$, the C_{i} being constants.

In case (i), we apply the lemma for $i=1,2,3$ and find $\gamma_{i} / \rho_{i}=$ const independent of $i=1,2,3,4$. This result contradicts the assumption (A.1b). In case (ii) $)_{1}$, with $\rho_{3}=\rho_{1}+\rho_{2}, \gamma_{3}=\cdots$, we apply the lemma for $i=1,2$ and we still find the same constant for the ratio $\gamma_{i /} / \rho_{i}$ and all four values. In case (iii), we cannot apply the lemma because u_{4} is proportional to $u_{1} u_{3}$. In principle we have eight relations, but it turns out that the vanishing of the coefficient of $u_{2} u_{3}$ gives an identity.

Case $u_{3}=C_{1} u_{1} u_{2}, u_{4}=C_{2} u_{1} u_{3}$. We have seven independent relations coming from (A.3): $i=1,2$ in (A.4a); $i=1,2,3$ in (A.4c); and two others. The first one includes terms proportional to both $u_{1} u_{2}$ and u_{3}, while the second contains both u_{4} and $u_{1} u_{3}$. After a tedious calculation we find

$$
n_{20} / 2=n_{30}=n_{10}\left(b_{m} \rho_{1}+c_{m} \gamma_{1}\right) /\left[b_{m}\left(\rho_{1}+\rho_{2}\right)+c_{m}\left(\gamma_{1}+\gamma_{2}\right)\right]
$$

and the interesting result

$$
\begin{array}{r}
n_{00} / n_{10}=\left[b_{m}\left(2 \rho_{1}+\rho_{2}\right)+c_{m}\left(2 \gamma_{1}+\gamma_{2}\right)\right] /\left[b_{m}\left(\rho_{1}+\rho_{2}\right)+c_{m}\left(\gamma_{1}+\gamma_{2}\right)\right] \\
m=1,2 \tag{A.6}
\end{array}
$$

From (A.6) and taking into account (A.2b) we find $\rho_{1} \gamma_{2}=\gamma_{1} \rho_{2}$ and with the relations between the u_{j}, we get that (A.1b) is not satisfied for $i=1,2,3,4$.

If we consider higher p values, the number of subcases involving terms ($u_{j}, u_{k} u_{k^{\prime}}$) increases, too. From a partial analysis of the $p=5$ case we have not found solutions involving several exponentials and with Δ not factorized.

REFERENCES

1. H. Cornille, J. Phys. A 20:1973 (1987); J. Math. Phys. 28:1567 (1987); Saclay PhT 86/145.
2. Illner, Mat. Meth. Appl. Sci. 1:187 (1979); Commun. Math. Phys. 94:353 (1984).
3. J. E. Broadwell, Phys. Fluids 7:1243 (1964); L. Tartar, Séminaire Goulaouic-Schwartz NI (1975-1976); J. T. Beale, Commun. Math. Phys. 94:341 (1968).
4. Gatignol, Lecture Notes in Physics, Vol. 36 (1976).
5. D. McKean Commun. Pure Appl. Math. 8:435 (1975); M. Shinbrot, in Oberwelfach Conference, D. Pach and M. Heunzert, eds. (1979), p. 11.
6. T. W. Ruijgrok and T. T. Wu, Physica 113A:401 (1982).
7. A. V. Bobylev, Mathematics Congress, Warsaw (1985) (Book Abstract B 29); J. Wick, Math. Math. Meth. Appl. Sci. 6:515 (1984); G. Dukek and T. F. Nonnenmacher, Physica 135A:167 (1978); T. Platkowski, J. Mec. Théor. Appl. 4:555 (1985).
8. S. Harris, Phys. Fluids 9:1328 (1966); I. Hardy and Y. Pomeau, J. Math. Phys. 13:1046 (1972); H. Cabannes, J. Mec. Theor. Appl. 17:1 (1979); Oberwelfach Conference (1979); Lecture Notes, University of California, Berkeley (1980).
9. R. Caflish, in Nonequilibrium Phenomena I, (J. L. Lebowitz, ed.) (1983), p. 193; Commun. Pure Appl. Math. 38:529 (1985); R.E. Caflish and G. C. Papanicolaou, Commun. Pure Appl. Math. 32:589 (1979); R. E. Caflish and T. P. Liu, in 15th Symposium on Rarefied Gas Dynamics, V. Boffi and C. Cercignani, eds. (B. G. Teubner, Stuttgart, 1986).

[^0]: ${ }^{\text {I }}$ Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur Yvette, France.

